| mproved Bayesian Networ ks
for Softwar e Project Risk Assessment
Using Dynamic Discr etisation

Norman Fentoh tukasz Radfiski?, Martin Neif

13 Queen Mary, University of London, UK
norman@dcs.gmul.ac.uk
2 Queen Mary, University of London, UK
and Institute of Information Technology in ManageméJniversity of Szczecin, Poland
lukrad@dcs.qmul.ac.uk

Abstract. It is possible to build useful models for softwgmeject risk assess-
ment based on Bayesian networks. A number of sudtelmdave been pub-
lished and used and they provide valuable predistifor decision-makers.

However, the accuracy of the published modelsnistéid due to the fact that
they are based on crudely discretised numeric nddegaditional Bayesian

network tools such discretisation was inevitabledeiers had to decide in ad-
vance how to split a numeric range into appropriatervals taking account of
the trade-off between model efficiency and accuratywever, recent a recent
breakthrough algorithm now makes dynamic discratiegpractical. We apply

this algorithm to existing software project risk dets. We compare the accu-
racy of predictions and calculation time for modeith and without dynamic

discretisation nodes.

1 Introduction

Between 2001 and 2004 the collaborative EC Praf##@DIST developed a soft-
ware defect prediction model [4] using Bayesianvwdeks (BNs). A BN is a causal
model normally displayed as a graph. The nodeshefgraph represent uncertain
variables and the arcs represent the causal/raeleviatationships between the vari-
ables. There is a probability table for each nagecifying how the probability of
each state of the variable depends on the statés parents. The MODIST model
(used by organisations such as Philips, QinetiQ larakel Aircraft Industries) pro-
vided accurate predictions for the class of prgjesithin the scope of the study.
However, the extendibility of the model was consied by a fundamental limitation
of BN modelling technology, namely that every contius variable had to be ap-
proximated by a set of discretised intervals (defiin advance). Since the MODIST
project has been completed we have addressed abé&epr of modelling continuous
nodes in BNs. A recent breakthrough algorithm (enpénted in the AgenaRisk soft-
ware toolset) now enables us to define continuamdes without any restrictions on
discretisation. The necessary discretisation iddridfrom the user and calculated dy-
namically with great accuracy. In this paper wecdég our work to rebuild the de-

fect prediction model using this approach to dymadiscretisation. In Section 2 we
provide an overview of the MODIST model and expléie limitations due to static
discretisation. In Section 3 we provide an overvigwhe dynamic discretisation ap-

proach and then apply it to construct a revised NEdDmodel in Section 4. We pre-
sent a comparison of the results in Section 5.

2 Existing modelsfor software project risk assessment

The defect prediction model developed in MODISEBhswn in schematic form in
Figure 1.

Scale of new
functionality

Scale of new spec implemented
and doc work
— Complexity of
Specification new functionality
process quality
A Adequacy of doc for
new functionality New functionality
implemented this phase
Probability of avoiding
specification defects Inherent pot. defects
from poor specification

Development .
process quality Pot defects given spec

and documentation
adequacy

Number of
distinct GUI
screens

Total number
of inputs and
outputs

Inherent pot. defects
(indep. of specification)

Probability of
avoiding defect in
development

Total pot. defects

New defects in

Total defects in

Overall
management
quality

Residual
defects pre

A

Probability of
finding defect
y
\

Probability of
fixing defect
Defects fixed

Testing and rework
process quality

defects post

Fig. 1. Schematic view of defect prediction model; adogdtech [2, 4]

Its main objective is prediction of various typdsiefects inserted or removed dur-
ing various software development activities. Allges on this figure indicate a node
of a Bayesian Net. Rectangles indicate subnetsagony several additional nodes,
which do not need to be shown here (since theyarémportant in this context and
would cause unnecessary complexity).

This model can be used to predict defects in eitfidhe following software devel-
opment scenarios:

1. adding new functionality to existing code and/ocumentation
2. creating new software from scratch (when no previoade and/or documentation
exists).

The model in Figure 1 represents a single phassoftfvare development that is
made up of one or more of the following activities:

 specification/documentation,
» development (coding),
 testing and rework.

Such single phase models can be linked togeth&rto a chain of phases which
indicate major increments (milestone) in the whaleject. This is the reason why in
MODIST this model is called “phase-based defectioteon model”. In this way we
can model any software development lifecycle. Mamemodelling various lifecycles
can be found in [3].

In common with many BN models this model containsigture of nodes that are
gualitative (and are measured on a ranked scabd) &8 “Overall management qual-
ity” and nodes that are numeric, such as defectsd@and KLOC. Because generally
BNs require numeric nodes to be discretised evéhely represent continuous vari-
ables there is an inevitable problem of inaccuta@gause a set of fixed intervals has
to be defined in advance. To improve accuracy edjgtions we have to split the
whole range of possible values for a particularendo a larger number of intervals.
The more intervals we have, the longer the calmratme — (since this includes gen-
erating the node probability table (NPT) from apmssion in many cases). It is not
simply a question of getting the right ‘trade-dfcause in many cases we need to as-
sume an infinite scale for which, of course, thema never be a satisfactory discreti-
sation.

One proposed solution to the problem has been mdmizie the number of inter-
vals by more heavily discretising in areas of expa@digher probability, using wider
intervals in other cases. This approach fails sitiation when we do not know in ad-
vance which values are more likely to occur. Sudiitwation is inevitable if we seek
to use the models for projects beyond their origicape.

Table 1 illustrates node states in the MODIST mddetwo nodes describing size
of the new software: “New Functionality” and “KLOCNotice that there are several
intervals where the ending value is around 50% arenhigher than the starting value.
The model cannot differentiate if we enter as aseolmtion a starting, ending value
or any other value between them. They are alléckats the same observation — mid-
dle of the interval.

There were two main reasons for defining such rstdees:

1. availability of empirical data that the model water validated against
2. calculation time which was acceptable for the nundfetates.

The node “KLOC” contains intervals with high diféarces between starting and
ending values. But those high differences are fdues below 15 KLOC and over
200 KLOC (it was assumed that the KLOC in a singf@ase would never outside
these boundaries). Hence, we can expect that pigdidor software size between 15
and 200 KLOC will be more accurate than outside thnge.

Table 1. Node for “New Functionality“ and “KLOC*

New Functionality KLOC (new)
Percentage Percentage
Interval Difference . Interval Difference .
Start End Size Between Starting Start End Size Between Starting
and Ending and Ending
Values Values
0 24 25 - 0 0,5 0,5 -
25 49 25 100,0% 0,5 1 0,5 100,0%
50 74 25 50,0% 1 2 1 100,0%
75 99 25 33,3% 2 5 3 150,0%
100 124 25 25,0% 5 10 5 100,0%
125 149 25 20,0% 10 15 5 50,0%
150 199 50 33,3% 15 20 5 33,3%
200 298 99 49,5% 20 25 5 25,0%
299 399 101 33,8% 25 30 5 20,0%
400 499 100 25,0% 30 40 10 33,3%
500 749 250 50,0% 40 50 10 25,0%
750 999 250 33,3% 50 60 10 20,0%
1000{ 1499 500 50,0% 60 80 20 33,3%
1500{ 1999 500 33,3% 80 100 20 25,0%
2000] 2999 1000 50,0% 100 125 25 25,0%
3000] 4999| 2000 66,7% 125 150 25 20,0%
5000{ 7999 3000 60,0% 150 175 25 16,7%
8000| 12000{ 4001 50,0% 175 200 25 14,3%
12001] 15999 3999 33,3% 200 300 100 50,0%
16000[19999 4000 25,0% 300 500 200 66,7%
20000{ 30000{ 10001 50,0% 500| 10000] 9500 1900,0%

For the “new functionality” node we cannot find arange of intervals with rela-
tively low differences between lower and upper libiman interval. This means that
we will have relatively inaccurate predictions famost software size expressed in
function points.

The defect prediction model contains several véggmbor predicting different
types of defects. Most of them have similar stateterms both the number of states
and their ranges. Table 2 illustrates intervalsofoe of them: “defects found”.

Table 2. Node states for “defects found*

Defectsfound Defects found (cont.)

Percentage Percentage

Interval Difference . Interval Difference .
Start End : Between Starting Start End X Between Starting

Size and Ending Size and Ending

Values Values

1 4 4 400,0% | 1500{ 2000 501 33,4%
5 19 15 300,0% | 2001| 3000 1000 50,0%
20 39 20 100,09% | 3001| 4000/ 1000 33,3%
40 59 20 50,0% | 4001| 5000 1000 25,0%
60 79 20 33,3%| 5001| 6000| 1000 20,0%
80 99 20 25,0%| 6001| 7000/ 1000 16,7%
100 124 25 25,0%| 7001| 8000/ 1000 14,3%
125 149 25 20,0%| 8001 9000/ 1000 12,5%
150 174 25 16,7%| 9001| 10000, 1000 11,1%
175 199 25 14,3%| 10001| 11000, 1000 10,0%
200 249 50 25,0%| 11001 12000 1000 9,1%
250 299 50 20,0%| 12001 13000 1000 8,3%
300 349 50 16,7%| 13001| 14000, 1000 7,7%
350 399 50 14,3%| 14001| 15000, 1000 7,1%
400 449 50 12,5%| 15001| 16000, 1000 6,7%
450 499 50 11,1%| 16001| 17000, 1000 6,2%
500 749 250 50,0% | 17001| 18000 1000 5,9%
750 999 250 33,3%| 18001 19000/ 1000 5,6%
1000| 1499 500 50,0% | 19001| 20000{ 1000 5,3%

3 Dynamic discretisation algorithm

The dynamic discretisation algorithm [5, 7] was eleped as a way to solve the
problems discussed in the previous section. Thergéputline of it is as follows:

1. Calculate the current marginal probability disttibn for a node given its current
discretisation.

2. Split that discrete state with the highest entrepgr into two equally sized states.

3. Repeat steps 1 and 2 until converged or error iswatceptable.

4. Repeat steps 1, 2 and 3 for all nodes in the BN.

The algorithm has now been implemented in the AB&iatoolset [1]. Using this
toolset we can simply set a numeric node as a atioal node without having to
worry about defining intervals (it is sufficient tefine a single interval [x, y] for any
variable that is bounded below by x and above byhjle for infinite bounds we only
need introduce one extra interval).

In the AgenaRisk tool we can specify the followsimulation parameters:

- maximum number of iterations — this value definesvimany iterations will be
performed at maximum during calculation; it dirgdtifluences the number of in-
tervals that will be created by the algorithm amaistcalculation time,

— simulation convergence — the difference betweeretiteopy error value between
subsequent iterations; the lower convergence welsetmore accurate results we
will have at the cost of computation time,

— sample size for ranked nodes — the higher value reztuces probabilities in tails
for ranked node distributions at the cost of longBiT generation process [1].

“Simulation convergence” can be set both as glgamhmeter for all simulation
nodes in the model or individually for selected @adn the second case the value of
the parameter for a selected node overrides tHmbl@lue for the whole model. If it
is not set for individual nodes the global valugaisen for calculation.

Currently there is no possibility to set the “maxim number of iterations” for a
particular node. All nodes in a model use the dldedting. This causes the same
number of ranges to be generated by the dynamuredisation algorithm for all
simulation nodes in most of the cases. We cannmaxmore intervals generated for
selected nodes resulting in more accurate predittiere.

4 Revised software project risk models

Table 3 illustrates differences between node typeaumeric nodes in the original
and revised models.

We do not present number of states for numeric siddehe revised model be-
cause they are not fixed. They rather depend onlatiman parameters which are set
by users.

In our model all numeric nodes are bound (do nethsegative or positive infin-
ity), so we set a single interval for those nodes.

Table 3. Numeric node types in original and revised models

Original model Revised model
Node
Type Simulation Number Type Simulation
of Interval of states| of Interval

Prob avoiding spec defects Continugus No 7 Continuous Yes
KLOC (new) Continuoug No 21 Continuous Yes
Total number of inputs ang Integer No 5 Integer Yes
outputs
Number of distinct GUI Integer No 5 Integer Yes
screens
New funct!onallty imple- Integer No 21 Continuous Yes
mented this phase
}nherent potential defects Integer No o5 Integer Yes
TOM poor spec
Inherent pot defects (indep. Integer No o5 Integer Yes
of spec)
Pot defects given spec an) Integer No 26 Integer Yes
documentation adequacy
Total pot defects Integer No 26 Intege Yes
New defects in Integer No 24 Integer Yes
Total defects in Integer No 38 Integer Yes
Defects found Integer No 38 Intege Yes
Defects fixed Integer No 39 Integer Yes
Residual defects pre Integer No 38 Integer Yes
Residual defects post Intege No 38 Integer Yesg
gg)/b of avoiding defect in Continuous No 5 Continuous Yes
Prob of finding defect Continuoys No 5 Continuous Yes
Prob of fixing defect Continuous No 5 Continuous Yes

5 Comparison of results

All calculations have been performed on a computigh Pentium M 1.8 GHz
Processor and 1 GB RAM under MS Windows XP Profesgiusing AgenaRisk ver.
4.0.4. We ran calculations for the revised modehgigwo values of parameter
“maximum number of iterations”: 10 and 25. We conggbachieved results with the
results achieved with the original model.

We observed very significant changes in predicedes for the revised and origi-
nal model. Those differences varied among nodessaerdarios. Most of the pre-
dicted means and medians were significantly lowethe revised model than in the
original (the range of those differences was fr@¥-to -80%). This result fixed a
consistent bias that we found empirically when am the models outside the scope

of the MODIST project. Specifically, what was hapjmg was that previously, out-
side the original scope, we were finding some podita mass in the end intervals.
For example, an end interval like [10,000-infinityiight have a small probability
mass, which without dynamic discretisation, wiladithe central tendency statistics
like the mean upwards. Only in a few cases did eove an increase in predicted
values. In all of them the differences were smathe highest was around 40%, but

most of them did not reach 10%.

We could also observe a decrease in standard oeviar predicted distributions
(from -8% to -80%). Partly this is explained by tm®del no longer suffering from
the ‘end interval’ problem that also skewed the sneas of central tendancy How-
ever, another reason is that dynamic discretisdtia@s the problem whereby nodes
that are defined by simple arithmetic functions hathecessary variability intro-
duced. For example, nodes like ‘total potentiakd&f, ‘total defect in’, ‘residual de-

fects post’ no longer suffer from inaccuracies duérely to discretisation errors af-
fecting addition/subtraction.

Probability
0.50

- - 4 - - Original
0.45 n

0.40 /

\ — #— Revised (max
/ \ iterations=10)
1
1

—&— Revised (max
iterations=25)

|
0.35 /

Original:
0304 7 ! Mean=667.84
/ ! Median=538.2
SD=711.55

Revised

(max iterations=10):
\ Mean=179.13
\ Median=117.88
SD=248.66

0.20

Revised
(max iterations=25):
N Mean=161,43
0104 Median=103.87
SD=230.35

"
0.25 4 II
I
I
I
I
I
I
|
I
I
!

‘‘‘‘‘‘

e

0 200 400 600 800 1000 1800 2000 Function Points

1200 1400 1600

Fig. 2. Comparison of probability distributions for “resaluefects post” for original and re-
vised models for selected scenario

The dynamic discretisation algorithm creates nddées in such way as to have
narrow intervals within the area of highest probaés and wide intervals where the
probabilities are low (Fig. 2). This ensures greateuracy for predicted values.

The number of intervals created for simulation reodepends mainly on the pa-
rameter “maximum number of iterations”. Figure [Rdtrates this. We can observe
that in the areas of higher probability more inédsvhave been created.

Node states are fixed for the nodes not markednaglation nodes. They do not
change according to predicted values for those siode

We can observe that predicted values for the nadsidual defects post” de-
creased significantly using the model with simaiathodes compared to the original.
This occurred for both tested values of “maximunmber of iterations”. Predicted
values for this node in both cases in the revisedahwere very similar (Fig. 2). Our
results show this was also true in other scenanaisfor other nodes.

Table 4. Comparison of calculation times for selected sderan original and revised model

Ti Percentage difference
ime . o
L in calculation times
(in minutes) -

(compared to original model
Model Average Shortest Average Shortest
Original 0:13.1 0:11.1 - -
Revised
(Maximum number 0:18.7 0:15.7 42.8% 41.4%
of iterations = 10)
Revised
(Maximum number 2:03.1 1:34.8 839.0% 754.5%
of iterations = 25)

We can observe the great difference between diffexettings of “maximum num-
ber of iterations” in calculation times (Table When we compared calculation times
for the revised model setting “maximum number efations” to 10 with the original
model, we could observe that they increased bygust 40%. Although it was a sig-
nificant increase in many cases it would make b déference for end user.

However, calculation times increased very signifttawhen we set this parameter
to 25 — around 8 times longer than in the origimaldel. In this case we get only
slightly more accurate predictions, so we mustdiedi much longer calculations can
be compensated by only slightly higher precision.

The latest version of AgenaRisk (which we receipgst before finishing this re-
search) contains optimizations to the algorithmahtiesult in the times presented in
Table 4 being generally halved. However, we carmessent precise information
about as we were unable to perform extensive tgsfithe new algorithm.

6 Summary and futurework

Results of our research have led us to the follgwionclusions:

1. Providing that we set a suitable value for the petar “maximum number of it-
erations” the dynamic discretisation algorithm emsugreater accuracy of pre-
dicted values for simulation nodes than for nodib fixed states.

2. Changing numeric node types to simulation nodeseaxusignificant decrease in
predicted “number of defects” and standard deuafio several nodes). This re-

sult fixed a consistent (pessimistic) bias we hathfl empirically in projects out-
side the scope of MODIST.

3. Applying the dynamic discretisation algorithm daws force model builders to de-
fine node states at the time of creation of the ehotihis is a very useful feature
especially in those cases when we do not know irarek in which ranges we
should expect higher probabilities.

4. We can mix simulation and traditional nodes in lagle model. We can define
fixed node states for some of the nodes whilersgtithers as simulation.

5. The cost of increased accuracy and model buildimglgity that comes with dy-
namic discretisation is increased calculation tintghese increases are insignifi-
cant for values which still provide significant reases in accuracy..

Applying dynamic discretisation to the defect potidin model was one of a num-
ber of improvements we plan for the MODIST mod@&lse next step will be to build
an integrated model from the existing two develojpettie MODIST project:

— defect prediction model,
— project level model (that contains, for examplsprece information)

We also plan to apply dynamic discretisation ts thiegrated model and to extend
it by incorporating other factors influencing treftsvare development process.

References
1. Agena, AgenaRisk User Manual, 2005
2. Agena, Software Project Risk Models Manual, Ver0012004
3. Fenton N., Neil M., Marsh W., Hearty P., Krause Rishra R. Predicting Software

Defects in Varying Development Lifecycles using Bsiga Nets, to appear Informa-

tion and Software Technology, 2006

MODIST BN models, http://www.modist.org.uk/docs/mstdbn_models.pdf

Neil M., Tailor M., Marquez D., Bayesian statisti¢aference using dynamic discre-

tisation, RADAR Technical Report, 2005

6. Neil M., Tailor M., Marquez D., Fenton N., Hearty, Rodelling Dependable Sys-
tems using Hybrid Bayesian Networks, Proc. of Firdernational Conference on
Availability, Reliability and Security (ARES 200&)0-22 April 2006, Vienna, Aus-
tria

7. Neil M., Tailor M., Marquez D., Inference in HybriBayesian Networks using dy-
namic discretisation, RADAR Technical Report, 2005

S

