
Improved Bayesian Networks
for Software Project Risk Assessment

Using Dynamic Discretisation

Norman Fenton1, Łukasz Radliński2, Martin Neil3

1,3 Queen Mary, University of London, UK
norman@dcs.qmul.ac.uk

2 Queen Mary, University of London, UK
and Institute of Information Technology in Management, University of Szczecin, Poland

lukrad@dcs.qmul.ac.uk

Abstract. It is possible to build useful models for software project risk assess-
ment based on Bayesian networks. A number of such models have been pub-
lished and used and they provide valuable predictions for decision-makers.
However, the accuracy of the published models is limited due to the fact that
they are based on crudely discretised numeric nodes. In traditional Bayesian
network tools such discretisation was inevitable; modelers had to decide in ad-
vance how to split a numeric range into appropriate intervals taking account of
the trade-off between model efficiency and accuracy. However, recent a recent
breakthrough algorithm now makes dynamic discretisation practical. We apply
this algorithm to existing software project risk models. We compare the accu-
racy of predictions and calculation time for models with and without dynamic
discretisation nodes.

1 Introduction

Between 2001 and 2004 the collaborative EC Project MODIST developed a soft-
ware defect prediction model [4] using Bayesian Networks (BNs). A BN is a causal
model normally displayed as a graph. The nodes of the graph represent uncertain
variables and the arcs represent the causal/relevance relationships between the vari-
ables. There is a probability table for each node, specifying how the probability of
each state of the variable depends on the states of its parents. The MODIST model
(used by organisations such as Philips, QinetiQ and Israel Aircraft Industries) pro-
vided accurate predictions for the class of projects within the scope of the study.
However, the extendibility of the model was constrained by a fundamental limitation
of BN modelling technology, namely that every continuous variable had to be ap-
proximated by a set of discretised intervals (defined in advance). Since the MODIST
project has been completed we have addressed the problem of modelling continuous
nodes in BNs. A recent breakthrough algorithm (implemented in the AgenaRisk soft-
ware toolset) now enables us to define continuous nodes without any restrictions on
discretisation. The necessary discretisation is hidden from the user and calculated dy-
namically with great accuracy. In this paper we describe our work to rebuild the de-

fect prediction model using this approach to dynamic discretisation. In Section 2 we
provide an overview of the MODIST model and explain the limitations due to static
discretisation. In Section 3 we provide an overview of the dynamic discretisation ap-
proach and then apply it to construct a revised MODIST model in Section 4. We pre-
sent a comparison of the results in Section 5.

2 Existing models for software project risk assessment

The defect prediction model developed in MODIST is shown in schematic form in
Figure 1.

Fig. 1. Schematic view of defect prediction model; adopted from [2, 4]

Language

KLOC
(new)

Number of
distinct GUI

screens

Scale of new
functionality
implemented

Complexity of
new functionality

Total number
of inputs and

outputs Scale of new spec
and doc work

Specification
process quality

Adequacy of doc for
new functionality

Probability of avoiding
specification defects Inherent pot. defects

from poor specification
Inherent pot. defects

(indep. of specification)

Pot defects given spec
and documentation

adequacy

Total pot. defects

New defects in

Probability of
avoiding defect in

development

Development
process quality

Overall
management

quality

Testing and rework
process quality

Probability of
finding defect

Total defects in

Residual
defects pre

Defects found

Probability of
fixing defect

Defects fixed

Residual
defects post

New functionality
implemented this phase

Its main objective is prediction of various types of defects inserted or removed dur-
ing various software development activities. All ellipses on this figure indicate a node
of a Bayesian Net. Rectangles indicate subnets containing several additional nodes,
which do not need to be shown here (since they are not important in this context and
would cause unnecessary complexity).

This model can be used to predict defects in either of the following software devel-
opment scenarios:
1. adding new functionality to existing code and/or documentation
2. creating new software from scratch (when no previous code and/or documentation

exists).

The model in Figure 1 represents a single phase of software development that is
made up of one or more of the following activities:

• specification/documentation,
• development (coding),
• testing and rework.

Such single phase models can be linked together to form a chain of phases which
indicate major increments (milestone) in the whole project. This is the reason why in
MODIST this model is called “phase-based defect prediction model”. In this way we
can model any software development lifecycle. More on modelling various lifecycles
can be found in [3].

In common with many BN models this model contains a mixture of nodes that are
qualitative (and are measured on a ranked scale) such as “Overall management qual-
ity” and nodes that are numeric, such as defects found and KLOC. Because generally
BNs require numeric nodes to be discretised even if they represent continuous vari-
ables there is an inevitable problem of inaccuracy because a set of fixed intervals has
to be defined in advance. To improve accuracy in predictions we have to split the
whole range of possible values for a particular node into a larger number of intervals.
The more intervals we have, the longer the calculation time – (since this includes gen-
erating the node probability table (NPT) from an expression in many cases). It is not
simply a question of getting the right ‘trade-off’ because in many cases we need to as-
sume an infinite scale for which, of course, there can never be a satisfactory discreti-
sation.

One proposed solution to the problem has been to minimize the number of inter-
vals by more heavily discretising in areas of expected higher probability, using wider
intervals in other cases. This approach fails in a situation when we do not know in ad-
vance which values are more likely to occur. Such a situation is inevitable if we seek
to use the models for projects beyond their original scope.

Table 1 illustrates node states in the MODIST model for two nodes describing size
of the new software: “New Functionality” and “KLOC”. Notice that there are several
intervals where the ending value is around 50% or more higher than the starting value.
The model cannot differentiate if we enter as an observation a starting, ending value
or any other value between them. They are all treated as the same observation – mid-
dle of the interval.

There were two main reasons for defining such node states:

1. availability of empirical data that the model was later validated against
2. calculation time which was acceptable for the number of states.

The node “KLOC” contains intervals with high differences between starting and
ending values. But those high differences are for values below 15 KLOC and over
200 KLOC (it was assumed that the KLOC in a single phase would never outside
these boundaries). Hence, we can expect that predictions for software size between 15
and 200 KLOC will be more accurate than outside this range.

Table 1. Node for “New Functionality“ and “KLOC“

New Functionality KLOC (new)

Start End
Interval

Size

Percentage
Difference

Between Starting
and Ending

Values

Start End
Interval

Size

Percentage
Difference

Between Starting
and Ending

Values

0 24 25 - 0 0,5 0,5 -

25 49 25 100,0% 0,5 1 0,5 100,0%

50 74 25 50,0% 1 2 1 100,0%
75 99 25 33,3% 2 5 3 150,0%

100 124 25 25,0% 5 10 5 100,0%
125 149 25 20,0% 10 15 5 50,0%

150 199 50 33,3% 15 20 5 33,3%

200 298 99 49,5% 20 25 5 25,0%

299 399 101 33,8% 25 30 5 20,0%

400 499 100 25,0% 30 40 10 33,3%

500 749 250 50,0% 40 50 10 25,0%

750 999 250 33,3% 50 60 10 20,0%

1000 1499 500 50,0% 60 80 20 33,3%

1500 1999 500 33,3% 80 100 20 25,0%

2000 2999 1000 50,0% 100 125 25 25,0%

3000 4999 2000 66,7% 125 150 25 20,0%

5000 7999 3000 60,0% 150 175 25 16,7%

8000 12000 4001 50,0% 175 200 25 14,3%

12001 15999 3999 33,3% 200 300 100 50,0%
16000 19999 4000 25,0% 300 500 200 66,7%
20000 30000 10001 50,0% 500 10000 9500 1900,0%

For the “new functionality” node we cannot find any range of intervals with rela-
tively low differences between lower and upper bound in an interval. This means that
we will have relatively inaccurate predictions for most software size expressed in
function points.

The defect prediction model contains several variables for predicting different
types of defects. Most of them have similar states in terms both the number of states
and their ranges. Table 2 illustrates intervals for one of them: “defects found”.

Table 2. Node states for “defects found“

Defects found Defects found (cont.)

Start End
Interval

Size

Percentage
Difference

Between Starting
and Ending

Values

Start End
Interval

Size

Percentage
Difference

Between Starting
and Ending

Values

1 4 4 400,0% 1500 2000 501 33,4%

5 19 15 300,0% 2001 3000 1000 50,0%

20 39 20 100,0% 3001 4000 1000 33,3%

40 59 20 50,0% 4001 5000 1000 25,0%

60 79 20 33,3% 5001 6000 1000 20,0%

80 99 20 25,0% 6001 7000 1000 16,7%

100 124 25 25,0% 7001 8000 1000 14,3%

125 149 25 20,0% 8001 9000 1000 12,5%

150 174 25 16,7% 9001 10000 1000 11,1%

175 199 25 14,3% 10001 11000 1000 10,0%

200 249 50 25,0% 11001 12000 1000 9,1%

250 299 50 20,0% 12001 13000 1000 8,3%

300 349 50 16,7% 13001 14000 1000 7,7%

350 399 50 14,3% 14001 15000 1000 7,1%

400 449 50 12,5% 15001 16000 1000 6,7%

450 499 50 11,1% 16001 17000 1000 6,2%

500 749 250 50,0% 17001 18000 1000 5,9%

750 999 250 33,3% 18001 19000 1000 5,6%

1000 1499 500 50,0% 19001 20000 1000 5,3%

3 Dynamic discretisation algorithm

The dynamic discretisation algorithm [5, 7] was developed as a way to solve the
problems discussed in the previous section. The general outline of it is as follows:

1. Calculate the current marginal probability distribution for a node given its current
discretisation.

2. Split that discrete state with the highest entropy error into two equally sized states.
3. Repeat steps 1 and 2 until converged or error level is acceptable.
4. Repeat steps 1, 2 and 3 for all nodes in the BN.

The algorithm has now been implemented in the AgenaRisk toolset [1]. Using this
toolset we can simply set a numeric node as a simulation node without having to
worry about defining intervals (it is sufficient to define a single interval [x, y] for any
variable that is bounded below by x and above by y, while for infinite bounds we only
need introduce one extra interval).

In the AgenaRisk tool we can specify the following simulation parameters:

− maximum number of iterations – this value defines how many iterations will be
performed at maximum during calculation; it directly influences the number of in-
tervals that will be created by the algorithm and thus calculation time,

− simulation convergence – the difference between the entropy error value between
subsequent iterations; the lower convergence we set, the more accurate results we
will have at the cost of computation time,

− sample size for ranked nodes – the higher value here reduces probabilities in tails
for ranked node distributions at the cost of longer NPT generation process [1].

“Simulation convergence” can be set both as global parameter for all simulation
nodes in the model or individually for selected nodes. In the second case the value of
the parameter for a selected node overrides the global value for the whole model. If it
is not set for individual nodes the global value is taken for calculation.

Currently there is no possibility to set the “maximum number of iterations” for a
particular node. All nodes in a model use the global setting. This causes the same
number of ranges to be generated by the dynamic discretisation algorithm for all
simulation nodes in most of the cases. We cannot expect more intervals generated for
selected nodes resulting in more accurate prediction there.

4 Revised software project risk models

Table 3 illustrates differences between node types for numeric nodes in the original
and revised models.

We do not present number of states for numeric nodes in the revised model be-
cause they are not fixed. They rather depend on simulation parameters which are set
by users.

In our model all numeric nodes are bound (do not have negative or positive infin-
ity), so we set a single interval for those nodes.

Table 3. Numeric node types in original and revised models

Original model Revised model

Node
Type

of Interval
Simulation

Number
of states

Type
of Interval

Simulation

Prob avoiding spec defects Continuous No 7 Continuous Yes

KLOC (new) Continuous No 21 Continuous Yes
Total number of inputs and
outputs

Integer No 5 Integer Yes

Number of distinct GUI
screens

Integer No 5 Integer Yes

New functionality imple-
mented this phase

Integer No 21 Continuous Yes

Inherent potential defects
from poor spec

Integer No 25 Integer Yes

Inherent pot defects (indep.
of spec)

Integer No 25 Integer Yes

Pot defects given spec and
documentation adequacy

Integer No 26 Integer Yes

Total pot defects Integer No 26 Integer Yes

New defects in Integer No 24 Integer Yes

Total defects in Integer No 38 Integer Yes

Defects found Integer No 38 Integer Yes

Defects fixed Integer No 39 Integer Yes

Residual defects pre Integer No 38 Integer Yes

Residual defects post Integer No 38 Integer Yes
Prob of avoiding defect in
dev

Continuous No 5 Continuous Yes

Prob of finding defect Continuous No 5 Continuous Yes

Prob of fixing defect Continuous No 5 Continuous Yes

5 Comparison of results

All calculations have been performed on a computer with Pentium M 1.8 GHz
Processor and 1 GB RAM under MS Windows XP Professional using AgenaRisk ver.
4.0.4. We ran calculations for the revised model using two values of parameter
“maximum number of iterations”: 10 and 25. We compared achieved results with the
results achieved with the original model.

We observed very significant changes in predicted values for the revised and origi-
nal model. Those differences varied among nodes and scenarios. Most of the pre-
dicted means and medians were significantly lower in the revised model than in the
original (the range of those differences was from -3% to -80%). This result fixed a
consistent bias that we found empirically when we ran the models outside the scope

of the MODIST project. Specifically, what was happening was that previously, out-
side the original scope, we were finding some probability mass in the end intervals.
For example, an end interval like [10,000-infinity] might have a small probability
mass, which without dynamic discretisation, will bias the central tendency statistics
like the mean upwards. Only in a few cases did we observe an increase in predicted
values. In all of them the differences were small – the highest was around 40%, but
most of them did not reach 10%.

We could also observe a decrease in standard deviation for predicted distributions
(from -8% to -80%). Partly this is explained by the model no longer suffering from
the ‘end interval’ problem that also skewed the measures of central tendancy How-
ever, another reason is that dynamic discretisation fixes the problem whereby nodes
that are defined by simple arithmetic functions had unnecessary variability intro-
duced. For example, nodes like ‘total potential defects’, ‘total defect in’, ‘residual de-
fects post’ no longer suffer from inaccuracies due entirely to discretisation errors af-
fecting addition/subtraction.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 200 400 600 800 1000 1200 1400 1600 1800 2000 Function Points

Probability

Original

Revised (max
iterations=10)

Revised (max
iterations=25)

Original:
Mean=667.84
Median=538.2
SD=711.55

Revised
(max iterations=10):
Mean=179.13
Median=117.88
SD=248.66

Revised
(max iterations=25):
Mean=161,43
Median=103.87
SD=230.35

Fig. 2. Comparison of probability distributions for “residual defects post” for original and re-
vised models for selected scenario

The dynamic discretisation algorithm creates node states in such way as to have
narrow intervals within the area of highest probabilities and wide intervals where the
probabilities are low (Fig. 2). This ensures greater accuracy for predicted values.

The number of intervals created for simulation nodes depends mainly on the pa-
rameter “maximum number of iterations”. Figure 2 illustrates this. We can observe
that in the areas of higher probability more intervals have been created.

Node states are fixed for the nodes not marked as simulation nodes. They do not
change according to predicted values for those nodes.

We can observe that predicted values for the node “residual defects post” de-
creased significantly using the model with simulation nodes compared to the original.
This occurred for both tested values of “maximum number of iterations”. Predicted
values for this node in both cases in the revised model were very similar (Fig. 2). Our
results show this was also true in other scenarios and for other nodes.

Table 4. Comparison of calculation times for selected scenarios in original and revised model

Time
(in minutes)

Percentage difference
in calculation times

(compared to original model)

Model Average Shortest Average Shortest

Original 0:13.1 0:11.1 - -

Revised
(Maximum number
of iterations = 10)

0:18.7 0:15.7 42.8% 41.4%

Revised
(Maximum number
of iterations = 25)

2:03.1 1:34.8 839.0% 754.5%

We can observe the great difference between different settings of “maximum num-
ber of iterations” in calculation times (Table 4). When we compared calculation times
for the revised model setting “maximum number of iterations” to 10 with the original
model, we could observe that they increased by just over 40%. Although it was a sig-
nificant increase in many cases it would make no real difference for end user.

However, calculation times increased very significantly when we set this parameter
to 25 – around 8 times longer than in the original model. In this case we get only
slightly more accurate predictions, so we must decide if much longer calculations can
be compensated by only slightly higher precision.

The latest version of AgenaRisk (which we received just before finishing this re-
search) contains optimizations to the algorithm which result in the times presented in
Table 4 being generally halved. However, we cannot present precise information
about as we were unable to perform extensive testing of the new algorithm.

6 Summary and future work

Results of our research have led us to the following conclusions:

1. Providing that we set a suitable value for the parameter “maximum number of it-
erations” the dynamic discretisation algorithm ensures greater accuracy of pre-
dicted values for simulation nodes than for nodes with fixed states.

2. Changing numeric node types to simulation nodes caused significant decrease in
predicted “number of defects” and standard deviation (in several nodes). This re-

sult fixed a consistent (pessimistic) bias we had found empirically in projects out-
side the scope of MODIST.

3. Applying the dynamic discretisation algorithm does not force model builders to de-
fine node states at the time of creation of the model. This is a very useful feature
especially in those cases when we do not know in advance in which ranges we
should expect higher probabilities.

4. We can mix simulation and traditional nodes in a single model. We can define
fixed node states for some of the nodes while setting others as simulation.

5. The cost of increased accuracy and model building simplicity that comes with dy-
namic discretisation is increased calculation timebut these increases are insignifi-
cant for values which still provide significant increases in accuracy..

Applying dynamic discretisation to the defect prediction model was one of a num-
ber of improvements we plan for the MODIST models. The next step will be to build
an integrated model from the existing two developed in the MODIST project:

− defect prediction model,
− project level model (that contains, for example, resource information)

We also plan to apply dynamic discretisation to this integrated model and to extend
it by incorporating other factors influencing the software development process.

References

1. Agena, AgenaRisk User Manual, 2005
2. Agena, Software Project Risk Models Manual, Ver. 01.00, 2004
3. Fenton N., Neil M., Marsh W., Hearty P., Krause P., Mishra R. Predicting Software

Defects in Varying Development Lifecycles using Bayesian Nets, to appear Informa-
tion and Software Technology, 2006

4. MODIST BN models, http://www.modist.org.uk/docs/modist_bn_models.pdf
5. Neil M., Tailor M., Marquez D., Bayesian statistical inference using dynamic discre-

tisation, RADAR Technical Report, 2005
6. Neil M., Tailor M., Marquez D., Fenton N., Hearty P., Modelling Dependable Sys-

tems using Hybrid Bayesian Networks, Proc. of First International Conference on
Availability, Reliability and Security (ARES 2006), 20-22 April 2006, Vienna, Aus-
tria

7. Neil M., Tailor M., Marquez D., Inference in Hybrid Bayesian Networks using dy-
namic discretisation, RADAR Technical Report, 2005

