
On Predicting Software Development Effort using Machine Learning Techniques and Local Data

Vol. 2, No. 2, July-December 2010 123

* Institute of Information Technology in Management, Faculty of Economics and Management, University of Szczecin, Poland,
E-mail: lukrad@uoo.univ.szczecin.pl, woodieh@gmail.com

INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND COMPUTING
© International Science Press, ISSN: 2229-7413

ON PREDICTING SOFTWARE DEVELOPMENT EFFORT USING
MACHINE LEARNING TECHNIQUES AND LOCAL DATA

Lukasz Radlinski and Wladyslaw Hoffmann

This paper analyses the accuracy of predictions for software development effort using various machine learning techniques. The
main aim is to investigate the stability of these predictions by analyzing if particular techniques achieve a similar level of
accuracy for different datasets. Two key assumptions are that (1) predictions are performed using local empirical data and (2)
very little expert input is required. The study involves using 23 machine learning techniques with four publicly available
datasets: COCOMO, Desharnais, Maxwell and QQDefects. The results show that the accuracy of predictions for each technique
varies depending on the dataset used. With feature selection most techniques provide higher predictive accuracy and this accuracy
is more stable across different datasets. The highest positive impact of feature selection on the accuracy has been observed for the
K* technique, which has generated the most accurate predictions across all datasets.
Keywords: effort prediction, local data, process factors, machine learning, prediction accuracy

1. INTRODUCTION
Software development effort can be predicted using
various approaches. Some of them require large
dataset of past projects while others require strong
input from domain expert. Some approaches are
easy to use while others are difficult to follow and
time consuming. Jørgensen and Shepperd [10]
performed a systematic review of software
development effort estimation studies. They have
provided and analyzed an extensive list of relevant
publications in their paper. They have also
performed various classifications for this subject.

In this study, we focus on the subfield of this
popular research field by attempting to answer the
following main question: Is it possible to easily
predict software development effort from local
data?

There are two key constraints limiting the scope
of this study: easy prediction and using local data.
By easy prediction we mean using such procedure,
which can be followed even without having
background in quantitative statistical techniques.
Some of such techniques can often be properly
applied only after performing various checks
related to input data, for example about the

normality of distributions or linear relationships
between variables to name just a couple of the
simplest. The procedures of using such techniques
may be complex and time-consuming. Thus, in this
study we examine a performance of a set of machine
learning techniques that can be applied easily to
the empirical input data. Naturally, they also
require some basic data preparation but this step is
very simple.

The second constraint is to use local data. By
this, we mean data from a single software company
or a software development division of a larger
organization. Various researchers have analyzed
effort predictions from local and cross-company
data. In [12, 16] the authors compare the accuracy
of predictions from local and cross-company data,
including results achieved in earlier work by other
authors. This analysis revealed that in some
experiments similar accuracy have been achieved,
while in other experiments predictions based on
local data have been more accurate than based on
cross-company data. When gathering cross-
company data there are typically more people
involved than when gathering local data.
Furthermore, for cross-company data there is a
larger risk in different understanding the data by

mailto:lukrad@uoo.univ.szczecin.pl
mailto:woodieh@gmail.comINTERNATIONAL

Lukasz Radlinski and Wladyslaw Hoffmann

124 International Journal of Software Engineering and Computing

people who gather them. For example, the
assessment “very high” for team experience is
highly subjective not only for different individuals
but also from a perspective of specific company, its
environment and culture. In addition, there are
various ways of calculating project effort depending
on the types of activities included, people involved
in development, and many others. For these
reasons, to reduce the difficulties associated with
using cross-company data, we have decided to use
only local data of software projects.

To support answering the main research
question of this paper we analyze the following set
of more detailed questions:

— What is the accuracy of predictions
obtained using various machine learning
techniques?

— What are the differences between
predictions using these techniques?

— What is the impact of feature selection on
achieved accuracy of predictions?

— How stable are predictions from particular
technique across various datasets?

This paper is organized as follows: Section 2
provides information on the procedure, techniques
and datasets used in this experiment. Main points
of the data preparation stage have been
summarized in Section 3. Section 4 discusses
achieved results. An overview of the threats to
validity has been included in Section 5. We sum up
the whole study in Section 6.

2. RESEARCH APPROACH

2.1. Dataset Used
In this study we have used four publicly available
datasets: COCOMO [2, 3], Desharnais [5], Maxwell

Table 1
Summary of Datasets Used

Datasets Number of Project Effort Number of numeric Number of ordinal Number of nominal
cases size predictors predictors predictors

COCOMO 93 KLOC person- 2 15 5
[2, 3] months
Desharnais 81 function person- 7 0 1
[5] points hours
Maxwell 62 function person- 3 15 6
[15] points hours
QQDefects 29 KLOC person- 1 27 2
[6, 7] hours

[15], and QQDefects [6, 7]. They have been
summarized in Table 1. All datasets are available
in the PROMISE repository [4]. Most of these
datasets, i.e. COCOMO, Desharnais, and Maxwell,
have been widely used in earlier experiments.
Selected results from these studies have been
discussed in Section 4.3.

QQDefects has been originally used in [6, 7] to
predict the number of defects. In this study we have
not used a variable “number of defects” and attempt
to use the dataset for effort prediction. However, a
slightly modified version of this dataset has been
used. This includes an additional predictor “project
type” and additional cases for which the data has
not been previously published. It should be noted
that QQDefects is the only dataset where the
number of variables (31) exceeds the number of
cases (29).

Tables 2–5 list the variables in particular dataset
used in this study. Most original datasets contain
other variables. However, since they are not
relevant to this study, we have removed them and
not listed in these tables. Detailed descriptions of
datasets and variables are available in relevant
original studies.

We can observe that there are high differences
between these datasets, related to the number of
cases and number of predictors of specific types.
Additionally, projects in different datasets are
typically described from different point of view. For
example, Maxwell dataset contains data on the
development process but is more focused on the
nature of projects. On the other hand, in QQDefects
dataset almost all variables describe the
development process. Furthermore, very few
variables have been included in all datasets, or

On Predicting Software Development Effort using Machine Learning Techniques and Local Data

Vol. 2, No. 2, July-December 2010 125

Table 2
List of Variables in COCOMO Dataset

Symbol Name Type Symbol Name Type

projectname name of project nominal acap analysts capability ordinal
cat category of application nominal aexp application experience ordinal
forg flight or ground system nominal pcap programmers capability ordinal
center which NASA center nominal vexp virtual machine experience ordinal
mode semidetached, embedded, organic nominal lexp language experience ordinal
rely required software reliability ordinal modp modern programing ordinal

practices
data data base size ordinal tool use of software tools ordinal
cplx process complexity ordinal sced schedule constraint ordinal
time time constraint for cpu ordinal year year of development numeric
stor main memory constraint ordinal kloc number of KLOC numeric
virt machine volatility ordinal effort development effort numeric
turn turnaround time ordinal

Table 3
List of Variables in Desharnais Dataset

Symbol Name Type Symbol Name Type

TeamExp team experience numeric Entities number of entities numeric
Language programming language nominal FPNon function points non- numeric

Adjust adjusted
ManagerExp manager experience numeric Adjustment function point complexity numeric

adjustment factor
YearEnd year project ended numeric Effort actual effort numeric
Transactions number of transactions numeric

Table 4
List of Variables in Maxwell Dataset

Symbol Name Type Symbol Name Type

App application type nominal Complex software logical complexity ordinal
Har hardware platform nominal Reqvol requirements volatility ordinal
Dba type of database nominal Qualreq quality requirements ordinal
Ifc type of user interface nominal Effreq efficiency requirements ordinal
Source where developed nominal Instreq installation requirements ordinal
Telonuse Telon use nominal Stanskil staff analysis skills ordinal
Nlan number of languages numeric Stappknow staff application knowledge ordinal
Custpart customer participation ordinal Sttoolskil staff tool skills ordinal
Devenv development environment ordinal Stteamskil staff team skills ordinal

adequacy
Staffav staff availability ordinal Size application size numeric
Standards standards use ordinal Time start year numeric
Methods methods use ordinal Effort effort numeric
Tools tools use ordinal

Lukasz Radlinski and Wladyslaw Hoffmann

126 International Journal of Software Engineering and Computing

Table 5
List of Variables in QQDefects Dataset

Symbol Name Type Symbol Name Type

specexp Relevant experience of ordinal stexpi Staff experience - independent ordinal
spec & doc staff test

qudoc Quality of documentation ordinal qutestc Quality of documented test ordinal
inspected cases

regsprev Regularity of spec & ordinal devtrq Dev. staff training quality ordinal
doc reviews

stproc Standard procedures followed ordinal coman Configuration management ordinal
reveff Review process effectiveness ordinal pplan Project planning ordinal
specdef Spec defects discovered in review ordinal scco Scale of distributed ordinal

communication
reqst Requirements stability ordinal stai Stakeholder involvement ordinal
compl Complexity of new functionality ordinal cusi Customer involvement ordinal
scfunc Scale of new functionality ordinal vman Vendor management ordinal

implemented
numio Total no. of inputs and outputs ordinal vend Vendors nominal
devexp Relevant development staff ordinal icomm Internal communication / ordinal

experience interaction
procap Programmer capability ordinal pmat Process maturity ordinal
defpro Defined processes followed ordinal ptype Project type nominal
devstmo Development staff motivation ordinal kloc project size in KLoC numeric
tprodef Testing process well defined ordinal effort effort numeric
stexpu Staff experience - unit test ordinal

generally: more than a one dataset. Even in such
rare cases, some of these variables, for example
project size and effort, are typically expressed on
different scales. These differences may cause that
machine learning techniques may achieve different
levels of accuracy depending on the dataset, i.e. a
particular technique may perform better in one
dataset but worse in another. We examine this when
discussing the results in Section 4.2.

2.2. Research Procedure
As indicated in the Section 1, the main assumption
for this study is related with applying a research
procedure that is simple and easy to follow. Thus,
this procedure consists only of very few basic steps.

In the first step an expert has to review the
variables in each dataset and keep only these which
may be potential predictors for effort, i.e. which are
typically known at the stage of the project when
effort needs to be predicted. Thus, variables such
as “duration” and “number of defects” have been

removed because their values are not known in
advance.

The second step covers data transformation to
new scales, i.e. discretisation. This step is necessary
because most techniques selected for use in this
experiment work only with categorized data. There
are various methods that perform this task
automatically, for example to achieve equal-
frequency or equal-width intervals. However, such
algorithms often define intervals with their starting
and ending values that are “not friendly”, i.e. not
rounded to any significant number. Thus, in this
study an expert has performed a discretization for
all numeric variables with the aim to define
intervals with meaningful values and similar
frequencies.

Some machine learning techniques cannot be
used with datasets that contain missing data. In our
study two datasets, Desharnais and QQDefects,
contain missing data. In such cases such missing
values are often filled by mean value for numeric

On Predicting Software Development Effort using Machine Learning Techniques and Local Data

Vol. 2, No. 2, July-December 2010 127

variables and the mode for nominal variables.
However, to eliminate the bias related with such
approach, we have decided to use only those
techniques that can work with missing data.

In the main step, each selected technique has
been used to generate predictions for each dataset.
In this analysis, we have used 23 techniques, listed
in Table 6, implemented in a popular Weka tool [8].
We have applied 10-fold cross-validation to
generate the predictions. Each dataset has been
randomly divided into ten subsets with similar
number of cases. Then, subset number 1 has been
used as a model/technique testing sample – all
remaining nine subsets have been used to build a
predictive model and/or generate predictions for
each case in the testing sample. This procedure has
been repeated for each subset.

Table 6
Machine Learning Techniques used in this Study

Group Symbol Technique

bayes AODE Averaged One-Dependence
Estimators

BN Bayesian Net
NB Naïve Bayes

functions MLP Multilayer Perceptron
RBFN Radial Basis Function Network
SMO Sequential Minimal Optimization for

Support Vector Machines
lazy KNN K-Nearest Neighbour

K* K*
LBR Lazy Bayesian Rules Classifier
LWL Locally Weighted Learning

rules DT Decision Table
DTNB Decision Table/Naïve Bayes Hybrid
RIPPER Repeated Incremental Pruning to

Produce Error Reduction
NNGe Nearest Neighbor with Generalization
1R 1R
PART PART Decision List

trees BFT Best-First Decision Tree
FT Functional Trees
J48 J48
LADT Multi-class Alternating Decision Tree
LMT Logistic Model Trees
NBT Decision Tree with Naïve Bayes

Classifiers at the leaves
RandF Forest of Random Trees

This step has been performed twice. In the first
run, all available predictors have been used to
generate a predictive model and provide
predictions. In the second run, some predictors in
each dataset have been removed using a feature
selection technique. Various earlier studies show
that more accurate predictions can be achieved not
with all available predictors but with only those
which are most relevant. In this study we have used
a BestFirst feature selection technique implemented
in Weka.

In most studies on effort prediction, the
assessment of predictive accuracy is based on
absolute or relative error, where a predicted
numeric value is compared with actual numeric
value. However, machine learning techniques used
in this study do not predict exact numeric value
but one of the classes (intervals). To assess the
accuracy such classification task different measures
need to be used. These measures assess how
accurately, i.e. “how often” a predicted class is the
actual class. In this study we have used the
following measures:

— accuracy (ACC), a proportion of correctly
predicted cases,

— precision (PRE), also called positive
predictive value,

— recall (REC), also called sensitivity or true
positive rate,

— area under ROC curve (AUC).
In some cases we have also additionally

analyzed confusion matrices which summarize the
number of correctly and incorrectly predictions for
each interval. The aim of this analysis was to
examine how often the predicted intervals have lain
far from the actual intervals. Other authors have
previously used most datasets from this study.
Thus, at the end, we have compared the levels of
accuracy achieved by these authors.

3. DATA PREPARATION
To satisfy the condition of this experiment that
achieving predictions requires very little support
from an expert, the data preparation process is also
quite simple. One of the key tasks involved here is
to discretize the numeric variables into a number
of intervals (classes).

Lukasz Radlinski and Wladyslaw Hoffmann

128 International Journal of Software Engineering and Computing

Figure 1 illustrates the histograms for “effort”
plotted with relatively high number of intervals.
Such intervals could not be used in our analysis
because in some of them there are very few or zero
cases. There is a threat that machine learning
techniques would not be able to properly discover
relationships between variables using the intervals
with such low frequencies. Thus, we need to
discretize variables to lower number of intervals,
as is common in other studies [9]. In this study,

numeric variables have been discretized into four
or five intervals depending on a dataset and a
particular variable.

An expert has attempted to define a set of
intervals with meaningful values and similar
frequencies. Table 7 presents such discretization for
“effort”. It can be observed that these intervals are
not of exactly equal frequencies but they can be
easily interpreted.

Figure 1: Histograms for Effort in Each Dataset

Table 7
Defined Intervals for Effort in Various Datasets

(Number of Cases in Brackets)

Dataset
Class ID COCOMO Desharnais Maxwell QQDefects

1 0 – 50 (17) 0 – 1500 (11) 0 – 1500 (9) 0 – 5000 (5)
2 50 – 120 (19) 1500 – 3000 (21) 1500 – 3000 (10) 5000 – 10000 (7)
3 120 – 400 (20) 3000 – 4500 (20) 3000 – 5000 (11) 10000 – 20000 (9)
4 400 – 1000 (22) 4500 – 8000 (14) 5000 – 10000 (18) > 20000 (8)
5 > 1000 (15) > 8000 (15) > 10000 (14)

On Predicting Software Development Effort using Machine Learning Techniques and Local Data

Vol. 2, No. 2, July-December 2010 129

In this experiment, the predictions have
been achieved in two modes – with and without
feature selection. In the second mode, we have
used the BestFirst method to select relevant
features (i.e. predictors). Table 8 contains lists
of nominated predictors used in this mode for

each dataset. As expected, a variable reflecting
project size has been selected in all four
datasets. Surprisingly, for COCOMO dataset,
only two other predictors have been selected,
and none of them describes the development
process.

Table 8
Predictors Selected in Feature Selection Stage

Dataset
Predictors COCOMO Desharnais Maxwell QQDefects

Numeric kloc Transactions
Entities Nlan
FPNonAdjust Size kloc
Adjustment

Ranked – – Custpart reqst
Staffav compl
Complex defpro
Instreq scco

pmat
Nominal projectname Language Dba –

mode

4. RESULTS

4.1. Basic data analysis
Prior to assessing and discussing the accuracy of
predictions we have performed a basic data analysis
to better understand the data gathered in analyzed
datasets. The focus of this basic analysis is on
identifying most important predictors and on
determining the strength of the relationship

between effort and each numeric predictor. This
step does not necessarily need to be followed when
assessing the accuracy of machine learning
techniques.

Correlation coefficients are popular and easy in
interpretation measures of the strength of
relationships between numeric variables. Figure 2
illustrates the values of Spearman rank correlation
coefficient (SRCC) between effort and each numeric

Figure 2: Values of Spearman Rank Correlation Coefficients between Effort and Relevant Predictors

Lukasz Radlinski and Wladyslaw Hoffmann

130 International Journal of Software Engineering and Computing

predictor. Only those variables have been
illustrated, for which the value of SRCC has been
statistically significant at p<0.05. Dark bars indicate
the positive values of SRCC and white bars –
negative values of SRCC.

Project development effort has the strongest
correlation with the size of the project – this can be
observed in all analyzed datasets. However, the
strength of impact of other factors varies among the
datasets. For example, complexity is the second
factor strongly related with effort in Maxwell
dataset (SRCC=0.59), fifth in QQDefects
(SRCC=0.50) and only eleventh in COCOMO
(SRCC=0.23).

Figure 3 provides a visualization, in the form
of scatterplot, of the relationships between project
size and development effort for each dataset. We
can see that with an increase of project size the
development effort also increases. However, a high
variability in this relationship indicates that there
are other factors significantly influencing
development effort.

4.2. Accuracy of Predictions
The values of measures of predictive accuracy for a
run with no feature selection are summarized in
Tables 9-10. These values fall in the range <0, 1>.
The value closer to one indicates a higher predictive
accuracy. For each dataset and each accuracy
measure the top three best performing techniques
have been marked with underline, and three worst
performing techniques with strikethrough.

It can be observed that low values of these
measures, even for best performing techniques,
suggest very low accuracy of predictions. The
highest accuracy have been achieved with
COCOMO dataset using LADT technique. Both
ACC, PRE and REC reached a value of 0.68, and
AUC of 0.87. No other technique provided higher
values for ACC, PRE, REC and AUC in any dataset.
The lowest overall accuracy has been achieved
using K* technique with Maxwell dataset, where
both ACC, PRE and REC reached a value of 0.13,
and AUC of 0.48. However, even lower values for

Figure 3: Scatterplots for Project Size vs Effort

On Predicting Software Development Effort using Machine Learning Techniques and Local Data

Vol. 2, No. 2, July-December 2010 131

selected measures have been observed, for example
in QQDefects PRE=0.10 using FT technique,
while AUC=0.43 using LWL and AUC=0.44 using
NBT.

The accuracy of predictions for almost all
techniques was not stable across different datasets.
For example, while LADT produced most accurate
predictions for COCOMO, it has been significantly
less accurate with Desharnais dataset and very
inaccurate with Maxwell and QQDefects datasets.
This lack of stability has been observed not only
for most accurate techniques but also for the least
accurate. Techniques least accurate in one dataset
often performed better than other techniques with
different datasets. The only two exceptions could
be K* and KNN techniques which have consistently
provided one of the least accurate predictions for
both Maxwell and QQDefects. Still, they are ranked

Table 9
Measures of Predictive Accuracy – no Feature Selection,

COCOMO and Desharnais Datasets
Dataset and COCOMO Desharnais
measure
Technique ACC PRE REC AUC ACC PRE REC AUC

AODE 0.43 0.38 0.43 0.74 0.44 0.42 0.44 0.78
BN 0.39 0.37 0.39 0.76 0.48 0.46 0.48 0.78
NB 0.40 0.38 0.40 0.75 0.46 0.44 0.46 0.78
MLP 0.51 0.51 0.51 0.77 0.41 0.41 0.41 0.73
RBFN 0.39 0.38 0.39 0.68 0.44 0.44 0.44 0.73
SMO 0.53 0.55 0.53 0.79 0.47 0.47 0.47 0.75
KNN 0.47 0.48 0.47 0.73 0.41 0.39 0.41 0.65
K* 0.46 0.46 0.46 0.78 0.43 0.39 0.43 0.76
LBR 0.41 0.40 0.41 0.76 0.48 0.46 0.48 0.78
LWL 0.54 0.56 0.54 0.82 0.47 0.46 0.47 0.72
DT 0.41 0.42 0.41 0.75 0.37 0.36 0.37 0.68
DTNB 0.57 0.57 0.57 0.84 0.51 0.51 0.51 0.78
RIPPER 0.60 0.59 0.60 0.81 0.47 0.45 0.47 0.68
NNGe 0.52 0.51 0.52 0.69 0.46 0.43 0.46 0.66
1R 0.56 0.56 0.56 0.72 0.37 0.30 0.37 0.59
PART 0.68 0.68 0.68 0.83 0.44 0.44 0.44 0.73
BFT 0.46 0.47 0.46 0.76 0.51 0.53 0.51 0.68
FT 0.53 0.53 0.53 0.78 0.47 0.46 0.47 0.67
J48 0.60 0.60 0.60 0.80 0.38 0.39 0.38 0.68
LADT 0.68 0.68 0.68 0.87 0.44 0.46 0.44 0.71
LMT 0.57 0.57 0.57 0.82 0.56 0.56 0.56 0.76
NBT 0.59 0.59 0.59 0.85 0.38 0.38 0.38 0.73
RandF 0.48 0.49 0.48 0.83 0.44 0.43 0.44 0.78

Table 10
Measures of Predictive Accuracy – No Feature Selection,

Maxwell and QQDefects Datasets

Dataset and Maxwell QQDefects
measure
Technique ACC PRE REC AUC ACC PRE REC AUC

AODE 0.24 0.23 0.24 0.56 0.38 0.39 0.38 0.61
BN 0.31 0.33 0.31 0.62 0.48 0.49 0.48 0.67
NB 0.31 0.33 0.31 0.62 0.41 0.40 0.41 0.64
MLP 0.29 0.29 0.29 0.60 0.34 0.36 0.35 0.66
RBFN 0.29 0.32 0.29 0.59 0.41 0.41 0.41 0.60
SMO 0.26 0.30 0.26 0.64 0.31 0.33 0.31 0.56
KNN 0.18 0.19 0.18 0.49 0.24 0.24 0.24 0.48
K* 0.13 0.13 0.13 0.48 0.24 0.23 0.24 0.56
LBR 0.31 0.32 0.31 0.61 0.48 0.47 0.48 0.65
LWL 0.29 0.18 0.29 0.56 0.17 0.16 0.17 0.43
DT 0.24 0.28 0.24 0.61 0.28 0.41 0.28 0.55
DTNB 0.35 0.32 0.36 0.62 0.34 0.35 0.35 0.56
RIPPER 0.39 0.39 0.39 0.60 0.28 0.30 0.28 0.51
NNGe 0.31 0.29 0.31 0.55 0.41 0.44 0.41 0.59
1R 0.35 0.31 0.36 0.59 0.34 0.35 0.35 0.57
PART 0.19 0.18 0.19 0.48 0.28 0.29 0.28 0.55
BFT 0.27 0.32 0.27 0.56 0.38 0.27 0.38 0.60
FT 0.29 0.32 0.29 0.60 0.31 0.10 0.31 0.50
J48 0.27 0.26 0.27 0.57 0.38 0.35 0.38 0.58
LADT 0.27 0.26 0.27 0.57 0.28 0.27 0.28 0.49
LMT 0.27 0.33 0.27 0.58 0.24 0.30 0.24 0.44
NBT 0.31 0.32 0.31 0.55 0.41 0.40 0.41 0.64
RandF 0.29 0.25 0.29 0.62 0.31 0.34 0.31 0.66

in the middle among other techniques with
COCOMO and Desharnais datasets. This lack of
stability of predictive accuracy causes a problem in
recommending a particular technique for industrial
use.

Tables 11-12 summarize the values of predictive
accuracy for the same techniques in the run with
feature selection. Generally, these values are higher
than in the run without feature selection (Tables 9-
10), what suggests higher accuracy achieved by
these techniques using feature selection.
Interestingly, some techniques that performed very
poor without feature selection have now achieved
predictions more accurate than other techniques.
For example, while K* has performed very poor
without feature selection, it has been one of the best
performing in COCOMO, Desharnais and

Lukasz Radlinski and Wladyslaw Hoffmann

132 International Journal of Software Engineering and Computing

Table 11
Measures of Predictive Accuracy – with Feature Selection,

COCOMO and Desharnais Datasets

Dataset and COCOMO Desharnais
measure

Technique ACC PRE REC AUC ACC PRE REC AUC

AODE 0.62 0.63 0.62 0.88 0.53 0.53 0.53 0.82

BN 0.56 0.57 0.56 0.85 0.54 0.54 0.54 0.82

NB 0.57 0.58 0.57 0.85 0.56 0.56 0.56 0.82

MLP 0.68 0.68 0.68 0.86 0.51 0.51 0.51 0.78

RBFN 0.67 0.67 0.67 0.84 0.54 0.55 0.54 0.73

SMO 0.67 0.68 0.67 0.88 0.56 0.59 0.56 0.80

KNN 0.68 0.68 0.68 0.86 0.48 0.50 0.48 0.75

K* 0.69 0.69 0.69 0.89 0.56 0.56 0.56 0.80

LBR 0.58 0.59 0.58 0.85 0.56 0.56 0.56 0.82

LWL 0.57 0.57 0.57 0.84 0.53 0.54 0.53 0.72

DT 0.53 0.53 0.53 0.78 0.37 0.36 0.37 0.68

DTNB 0.51 0.52 0.51 0.83 0.52 0.56 0.52 0.78

RIPPER 0.48 0.52 0.48 0.77 0.41 0.41 0.41 0.69

NNGe 0.57 0.58 0.57 0.73 0.56 0.57 0.56 0.72

1R 0.56 0.56 0.56 0.72 0.37 0.30 0.37 0.59

PART 0.58 0.58 0.58 0.82 0.51 0.52 0.51 0.72

BFT 0.62 0.63 0.62 0.82 0.52 0.55 0.52 0.74

FT 0.61 0.62 0.61 0.82 0.54 0.55 0.54 0.76

J48 0.58 0.59 0.58 0.81 0.48 0.50 0.48 0.71

LADT 0.62 0.64 0.62 0.88 0.46 0.45 0.46 0.77

LMT 0.56 0.57 0.56 0.81 0.51 0.51 0.51 0.72

NBT 0.57 0.58 0.57 0.85 0.53 0.54 0.53 0.78

RandF 0.65 0.65 0.65 0.83 0.48 0.48 0.48 0.79

Table 12
Measures of Predictive Accuracy – with Feature Selection,

Maxwell and QQDefects Datasets
Dataset and
measure Maxwell QQDefects

Technique ACC PRE REC AUC ACC PRE REC AUC

AODE 0.44 0.44 0.44 0.71 0.52 0.53 0.52 0.82
BN 0.42 0.46 0.42 0.75 0.55 0.56 0.55 0.82
NB 0.42 0.46 0.42 0.75 0.52 0.54 0.52 0.82
MLP 0.40 0.42 0.40 0.70 0.45 0.46 0.45 0.72
RBFN 0.45 0.44 0.45 0.67 0.55 0.56 0.55 0.69
SMO 0.37 0.39 0.37 0.68 0.48 0.54 0.48 0.75
KNN 0.32 0.33 0.32 0.66 0.52 0.51 0.52 0.69
K* 0.42 0.42 0.42 0.69 0.52 0.51 0.52 0.77
LBR 0.42 0.46 0.42 0.75 0.52 0.54 0.52 0.83
LWL 0.32 0.27 0.32 0.63 0.34 0.36 0.35 0.49
DT 0.31 0.33 0.31 0.66 0.24 0.31 0.24 0.60
DTNB 0.39 0.38 0.39 0.63 0.38 0.42 0.38 0.70
RIPPER 0.42 0.43 0.42 0.62 0.45 0.51 0.45 0.67
NNGe 0.40 0.43 0.40 0.62 0.45 0.49 0.45 0.63
1R 0.35 0.31 0.36 0.59 0.34 0.35 0.35 0.57
PART 0.31 0.31 0.31 0.65 0.38 0.37 0.38 0.64
BFT 0.29 0.30 0.29 0.58 0.34 0.30 0.35 0.64
FT 0.35 0.35 0.36 0.59 0.31 0.10 0.31 0.50
J48 0.34 0.33 0.34 0.62 0.45 0.33 0.45 0.61
LADT 0.29 0.32 0.29 0.64 0.38 0.40 0.38 0.62
LMT 0.44 0.47 0.44 0.69 0.38 0.41 0.38 0.68
NBT 0.35 0.38 0.36 0.65 0.52 0.54 0.52 0.82
RandF 0.35 0.36 0.36 0.67 0.45 0.44 0.45 0.74

QQDefects datasets and not very far from the top
with Maxwell dataset. The LADT technique, which
achieved the highest accuracy without feature
selections, has been one of the least accurate with
Maxwell dataset and around the middle among
other techniques in other datasets. Such results
confirm that feature selection can significantly
change the accuracy of predictions.

What is most important is that the stability of
predictive accuracy has increased. It means that
very often a particular technique, which has
performed well in one dataset, it has also performed
well with other datasets.

Table 13 illustrates the impact of using feature
selection on predictive accuracy. These values
indicate the difference of values of accuracy
measures between modes with using and not using
feature selection. The highest gain from feature
selection has been observed for K* technique on
Maxwell dataset with delta ACC=0.29 and delta
AUC=0.21. The impact of feature selection on ACC,
PRE and REC was in most cases very similar, thus,
for clarity we publish only the delta for ACC.

KNN is another technique that has significantly
improved on all datasets. Other techniques have
improved significantly only on selected datasets.
For example, RBFN has achieved higher accuracy
only on COCOMO, and much less significantly on
other datasets. There are also some techniques,

On Predicting Software Development Effort using Machine Learning Techniques and Local Data

Vol. 2, No. 2, July-December 2010 133

Table 13
The Impact of Feature Selection on the

Predictive Accuracy
Dataset and COCOMO Desharnais Maxwell QQDefects
measure

Technique ACC AUC ACC AUC ACC AUC ACC AUC

AODE 0.19 0.14 0.09 0.04 0.19 0.16 0.14 0.22
BN 0.17 0.09 0.06 0.04 0.11 0.14 0.07 0.15
NB 0.17 0.10 0.10 0.04 0.11 0.14 0.10 0.18
MLP 0.17 0.08 0.10 0.05 0.11 0.10 0.10 0.06
RBFN 0.28 0.16 0.10 0.00 0.16 0.08 0.14 0.09
SMO 0.14 0.08 0.09 0.05 0.11 0.05 0.17 0.19
KNN 0.20 0.13 0.07 0.10 0.15 0.17 0.28 0.21
K* 0.23 0.11 0.12 0.04 0.29 0.21 0.28 0.21
LBR 0.17 0.09 0.07 0.04 0.11 0.14 0.03 0.18
LWL 0.03 0.03 0.06 0.00 0.03 0.06 0.17 0.06
DT 0.12 0.03 0.00 0.00 0.06 0.05 -0.03 0.05
DTNB -0.06 -0.01 0.01 0.00 0.03 0.01 0.03 0.14
RIPPER -0.12 -0.04 -0.06 0.01 0.03 0.02 0.17 0.16
NNGe 0.05 0.04 0.10 0.07 0.10 0.07 0.03 0.03
1R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PART -0.10 0.00 0.06 -0.01 0.11 0.16 0.10 0.09
BFT 0.16 0.06 0.01 0.06 0.02 0.02 -0.03 0.04
FT 0.09 0.05 0.07 0.09 0.06 -0.01 0.00 0.00
J48 -0.02 0.01 0.10 0.03 0.06 0.04 0.07 0.02
LADT -0.05 0.01 0.01 0.06 0.02 0.07 0.10 0.13
LMT -0.01 0.00 -0.05 -0.04 0.16 0.11 0.14 0.24
NBT -0.02 -0.01 0.15 0.05 0.05 0.11 0.10 0.18
RandF 0.16 0.00 0.04 0.02 0.06 0.05 0.14 0.08

which have not improved at all with feature
selection, and some have even achieved a lower
accuracy. Among them, there are for example
DTNB, RIPPER, 1R, BFT, FT, and LMT on selected
datasets.

Figure 4 illustrates predictions, i.e. confusion
matrices, for K* technique with and without feature
selection for COCOMO dataset. The values on the
diagonal, that indicate the number of correctly
predicted intervals, have been marked with bold
frame. The K* technique with feature selection for
COCOMO dataset provides the highest accuracy
among all other techniques and all datasets. We can
observe that in most cases the interval for
development effort has been correctly predicted.
For incorrectly predicted cases the majority
achieved the prediction within the neighboring
interval, only two cases in a distance of two intervals

from the actual values, and another two cases three
intervals from original predictions. Predictive
accuracy expressed using various measures is far
from perfect even for the best performing technique.
However, such detailed results show that for
incorrectly predicted cases the difference between
actual and predicted values was not high.

Without using feature selection the predictions
achieved by K* on COCOMO dataset have been
significantly worse, both in terms of accurately
predicted cases and in term of the difference
between actual and predicted values. However,
even with ACC=0.46, only 6/93 cases (6.5%) have
been predicted with a difference of more than two
intervals from the originals. Thus, such accuracy
may still be satisfactory in some environments.

4.3. Related Work
Other authors have previously used the same four
datasets in their studies. It is beyond the scope of
this paper to discuss all of earlier studies but we
bring some of them. For COCOMO dataset
Srinivasan and Fisher [19] have found that neural
network outperformed regression tree in
predictive accuracy. Baskeles et al. [1] has achieved
the highest accuracy using decision trees, followed
by RBF network, support vector machines and
MLP.

For Desharnais dataset Li et al. [11] have
achieved the most accurate predictions with various
techniques related to estimation by analogy,
followed by stepwise regression, neural networks
and regression trees. Schepperd and Schofield [18]
have achieved more accurate predictions using
estimation by analogy than with stepwise
regression model. Mair et al. [13] used various
techniques for predicting effort with this dataset.
They have achieved the highest accuracy with
neural networks, followed by case-based reasoning
and least squares regression models (ex aequo) and
rule induction.

Li et al. [11] have compared the accuracy of
various techniques also for Maxwell dataset. They
have achieved the most accurate predictions with
various techniques based on estimation by analogy,
followed by regression trees, stepwise regression
and neural network models. Using the same dataset
Malhotra et al. [14] have found that linear

Lukasz Radlinski and Wladyslaw Hoffmann

134 International Journal of Software Engineering and Computing

regression, MSP and M5Rules are effective
techniques for predicting software development
effort; support vector machine and RBF models
provided significantly lower accuracy.

QQDefects, as explained earlier, has been
originally used for defect prediction [6]. However,
in one study it has also been used for effort
prediction. Radliński [17] has found that Bayesian
net model automatically generated from data has
not provided accurate predictions. To improve them
a stronger input from domain expert would be
required.

In all these related studies the authors have used
different measures of accuracy – based on relative
or absolute error, not on accuracy of classification
(see discussion in the next section). We have found
only one study where the authors have used similar
accuracy measures as in this paper. Hewett and
Kijsanayothin [9] have used various machine
learning techniques for predicting defect repair time
using a dataset from an earlier study [20]. They have
achieved the highest accuracy with J48 and DT. In
our study, J48 has achieved high accuracy only for
COCOMO dataset with no feature selection, in
other cases the accuracy was among the middle. The
DT technique has been consistently among the least
accurate techniques for various datasets.

5. THREATS TO VALIDITY
In most cases the accuracy of particular techniques
has been unstable across datasets. There are
significant differences between these datasets, in
number of cases and in number of variables of
particular type. These differences in the datasets
may have an impact on the accuracy of predictions.
We plan to investigate this problem in further
analyses.

This experiment involves using only local data,
i.e. from a single company. We have found only
four publicly available datasets that meet this
condition. Further, for this reason analyzed datasets
are relatively small because a single company does
not develop as many projects as a set of companies.
Therefore, based on the achieved results, we believe
that it is difficult to generalize how particular
machine learning technique perform in effort
prediction.

With low number of cases in the datasets, in
particular in QQDefects, we have decided to
discretize the numeric values to relatively low
number of intervals (states). It has caused an
inevitable loss of precision of expressing the values
of these variables. However, with higher number
of intervals there is a risk that machine learning
techniques would not be able to properly learn “the
rules” from the datasets.

Development effort is a number expressed in
person-hours or person-months; other studies may
use some other units. However, in this study the
aim is not to predict the numeric value for effort
but a correct interval. Thus, the accuracy of
predictions have been expressed with measures
such as ACC, PRE, REC, and AUC which are
typically used in classification tasks. These
measures are based on a concept that correct
prediction occurs when predicted interval is the
same as actual interval and incorrect prediction
occurs when predicted interval is different than
actual interval. These measures do not contain
information of the degree of inaccuracy, i.e. how
far the incorrect prediction is from the actual
interval. Other studies focused on effort prediction
use measures based of relative or absolute error
calculated for numeric values of effort. Thus, a

Figure 4: Comparison of Predictions using K* Technique without (Left) and with (Right) Feature Selection on COCOMO Dataset

without feature
selection

Actual with feature
selection

Actual
1 2 3 4 5 1 2 3 4 5

Predicted

1 11 7 2 2 2

Predicted

1 11 1 0 2 0
2 5 4 4 1 0 2 6 15 2 0 0
3 0 6 10 3 4 3 0 2 17 3 0
4 1 1 3 12 3 4 0 1 0 11 5
5 0 1 1 4 6 5 0 0 1 6 10

On Predicting Software Development Effort using Machine Learning Techniques and Local Data

Vol. 2, No. 2, July-December 2010 135

comparison of the accuracy achieved in this study
with the accuracy achieved in other studies cannot
be done directly.

In industry development effort is predicted for
specific projects. These projects are not anonymous
and can be described using a set of nominal features.
The datasets used in this study contain very few
such factors, especially in the run with feature
selection. Thus, not all data/knowledge typically
available in industrial setting has been used in
predictions.

Several techniques can be used with various
values of their parameters. In this experiment we
have not analyzed the impact of the values of these
parameters. For example, in KNN it is necessary to
provide a value for “k” – the number of neighbors.
In this study we have used a value “1”, but in other
studies also other values have been considered, for
example “3” and “5” in [9]. The values of such
parameters may influence the accuracy of
predictions. In future we plan to investigate the
impact of these parameters for some techniques.

We have shown in the paper that the most
influential factor for development effort is project
size, typically expressed in function points or
KLOC. There is a problem with using project size
as predictor for effort. Effort often needs to be
predicted at the beginning of the project. In such
cases precise value of project size is often unknown.
This happens especially when it is measured in
KLOC – the code is not finished, thus the release
version cannot be measured. Expressing project size
in function points may be performed earlier, when
detailed software design is ready. However, in some
development approaches, for example agile, such
design is not prepared early in project lifecycle. As
pointed earlier, all predictions in this study have
been performed not using the numeric values of
project size but using the discretized intervals. In
reality such discretisation may correspond to
assessment of project size on a four- or five-point
ranked scale, which is easier to achieve than
estimating a numeric value.

6. SUMMARY
In this study we have compared the accuracy of
predictions for software development effort
provided by 23 machine learning techniques across

four datasets. The key idea of this study is to
perform an experiment under two constraints:
using only local data and applying analysis
procedure that is easy to follow.

In the first run, we have used data for all
available variables. The accuracy of particular
techniques is different depending on the dataset
used. The differences between the most and the
least accurate techniques are high.

In the second run, we repeated this experiment
on datasets reduced after applying a feature
selection technique. We have observed higher
predictive accuracy for majority of techniques.
However, some techniques provided least accurate
predictions than in the first run. The K* technique
appear to be the most accurate. It is also among the
techniques that have achieved the highest
improvement on accuracy with feature selection.

The general level of accuracy, expressed with
various measures for classification tasks, is not
very high. Such results suggest that predicted
effort intervals have been different from actual
intervals. However, in the detailed analysis of
confusion matrices we have revealed that very
often the distance between the predicted and
actual interval have been low. Thus, such
techniques may not provide very precise
predictions in such easy-to-follow procedure, but
the level of inaccuracy may still be acceptable for
project managers who can fast get a general
overview of the development effort.

In future, we plan to further investigate the
applicability of such easy procedure. Specifically,
we plan to analyze issues raised in Section 5, related
to the features of the datasets and the projects
collected in them, as well as using various
parameters of machine learning techniques. Such
analysis can also be extended for other areas of
software engineering such as defect prediction.

References
[1] Baskeles B., Turhan B., Bener A., Software Effort

Estimation Using Machine Learning Methods, 22nd
International Symposium on Computer and Information
Sciences, Ankara, 2007, pp. 1-6.

[2] Boehm B. W., Abts C., Brown W., Chulani S., Clark B. K.,
Horowitz E., Madachy R., Reifer D. J., Software Cost
Estimation with Cocomo II, Englewood Cliffs, NJ: Prentice
Hall PTR, 2000.

Lukasz Radlinski and Wladyslaw Hoffmann

136 International Journal of Software Engineering and Computing

[3] Boehm B. W., Software Engineering Economics, Upper
Saddle River, NJ: Prentice Hall PTR, 1981.

[4] Boetticher G., Menzies T., Ostrand T., PROMISE
Repository of empirical software engineering data, West
Virginia University, Department of Computer Science,
2010, http://promisedata.org/repository.

[5] Desharnais J. M., Analyse Statistique de la Productivitie
des projets informatique a partie de la technique des point
des function, Master Thesis, University of Montreal, 1989.

[6] Fenton N., Neil M., Marsh W., Hearty P., Radliński Ł.,
Krause P., On the Effectiveness of Early Life Cycle Defect
Prediction with Bayesian Nets, Empirical Software
Engineering, 13(5), 2008, 499-537.

[7] Fenton N., Neil M., Marsh W., Hearty P., Radliński Ł.,
Krause P., Project Data Incorporating Qualitative Factors
for Improved Software Defect Prediction, Proceedings 3rd

International Workshop on Predictor Models in Software
Engineering. International Conference on Software
Engineering, Washington, DC: IEEE Computer Society,
2007, p. 2.

[8] Hall M., Frank E., Holmes G., Pfahringer B., Reutemann
P., Witten I. H., The WEKA Data Mining Software: An
Update, SIGKDD Explorations, 11(1), 2009.

[9] Hewett R., Kijsanayothin P., On Modeling Software Defect
Repair Time, Empirical Software Engineering, 14(2), 2009,
165-186.

[10] Jørgensen M., Shepperd M., A Systematic Review of
Software Development Cost Estimation Studies, IEEE
Transactions on Software Engineering, 33(1), 2007, 33-53.

[11] Li Y. F., Xie M., Goh T. N., A Study of the Non-linear
Adjustment for Analogy Based Software Cost Estimation,
Empirical Software Engineering, 14(6), 2009, 603-643.

[12] Lokan C., Mendes E., Cross-company and Single-
company Effort Models using the ISBSG Database: A
Further Replicated Study, Proceedings of the 2006 ACM/
IEEE international Symposium on Empirical Software
Engineering, New York: ACM, 2006, pp. 75-84.

[13] Mair C., Kadoda G., Lefley M., Phalp K., Schofield C.,
Shepperd M., Webster S., An Investigation of Machine
Learning based Prediction Systems, Journal of Systems
Software, 53(1), 2000, 23-29.

[14] Malhotra R., Kaur A., Singh G.G., Application of Machine
Learning Methods for Software Effort Prediction, ACM
SIGSOFT Software Engineering Notes, 35(3), 2010, 1-6.

[15] Maxwell K. D., Applied Statistics for Software Managers,
Upper Saddle River, NJ: Prentice Hall PTR, 2002.

[16] Mendes E., Lokan C. Replicating Studies on Cross- vs
Single-company Effort Models using the ISBSG Database,
Empirical Software Engineering, 13(1), 2008, 3-37.

[17] Radliński Ł., Software Development Effort and Quality
Prediction Using Bayesian Nets and Small Local
Qualitative Data, in Proc. 22nd International Conference
on Software Engineering and Knowledge Engineering,
Redwood City, CA, 2010, pp. 113-116.

[18] Shepperd M. J., Schofield C., Estimating Software Project
Effort using Analogies, IEEE Transactions on Software
Engineering, 23, 1997, 736-743.

[19] Srinivasan K., Fisher D., Machine Learning Approaches
to Estimating Software Development Effort, IEEE
Transactions on Software Engineering , 21(2), 1995,
126-137.

[20] Stringfellow C., Andrews A., An Empirical Method for
Selecting Software Reliability Growth Models, Empirical
Software Engineering, 7(4), 2002, 319–343.

http://promisedata.org/repository

