
Łukasz Radliński
†‡

 Norman Fenton
‡
 Martin Neil

‡

†
Instytut Informatyki w Zarządzaniu, Wydział Nauk Ekonomicznych i Zarządzania,

Uniwersytet Szczeciński, ul. Mickiewicza 64, 71-101 Szczecin, Poland
‡
Department of Computer Science, Faculty of Informatics and Mathematical Sciences,

Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom

A Learning Bayesian Net

for Predicting Number of Software Defects Found

in a Sequence of Testing

Abstract

We present the model for predicting the number of defects found in each testing iteration. The

model assumes that the software is developed either according to the classical waterfall

lifecycle or its variation, where testing takes place in a series of iterations after the coding of

the whole software is finished. The input data to the initial model are the numbers of defects

found in some first iterations of testing. Our model can also use as the input the estimated

total number of residual defects given by other models. We partially validate the model using

the publicly available datasets of software projects developed in cooperation with NASA:

JM1, KC1, PC1, PC3, PC4. However, these datasets did not contain any information on

testing effort and our results highlight the importance of recording such data for factors

influencing testing effectiveness. We show how the model can be extended by adding other

input variables such as effort, process and people quality and bias. Finally, we show the

results of validating this extended model using a semi-randomly generated dataset.

Keywords: defect prediction, learning Bayesian net, testing sequence

Background and motivation

Software quality prediction has been a well researched topic in software engineering for many

years. This research has generally focused on a) predicting the total number of residual

defects remaining in software after testing or release [1, 2, 3, 4]; b) identifying fault prone

components (module, class etc.) [5, 6, 7]; c) reliability treated as predicting time between

failures or similar measures [8, 9]; and d) predicting the number of defects to be found in

specific time intervals in the future. Increasingly we have found that practitioners are most

concerned with this latter problem. Yet none of the past achievements in this area can be

regarded as totally satisfactory. In this paper we describe a model (a Bayesian net) that we

developed to predict the number of defects that are likely to be found in future testing

iterations, given data about defects on previous iterations. This problem has been analyzed in

numerous studies using different modeling techniques [10, 11, 12, 13, 14]. We also discuss

the initial model validation results.

Generally, we can develop 3 types of models for predicting number of defects in a specific

testing iteration:

1. Models following a specific trend line.

Before developing a model a trend type has to be determined. Then an expression that is a

function of time has to be developed. At the end the parameters for this expression describing

the trend line have to be estimated using some of the data from the available dataset. The

prediction is made by entering the iteration number as an input to the expression (possibly

with other variables describing the testing process).

2. Learning models following a specific trend line.

As in the previous type both a trend type and an expression describing the trend have to be

determined. But the expression parameters do not need to be estimated outside the model.

Rather the values of early observations of defects found are entered in the model. Then the

model learns its parameters – in BNs this is done using back-propagation. As in the previous

type, the prediction is made by entering the iteration number as an input to the model (also

possibly with other variables describing testing process).

3. Learning models without the specific trend line assumption.

In this type of model there is no assumption about the type of trend line followed by the data.

It can be modeled as a network – set of variables influencing each other. The unknown values

of variables are learnt after entering observations for number of defects found in some early

testing iterations. The prediction is made after generating more instances of single iterations

and linking them in the same way as they were defined for learning.

In this study we analyze the possibility of developing a model of the latter type – without the

specific trend line assumption for defects found. We want to develop a model usable in

various testing approaches without assumptions about the trend lines. Furthermore, we want

to expand the model by other actions and consequences related to testing such as: fixing

defects and introducing new defects as a result of imperfect fixes.

The datasets

In our study we have used some of the publicly available datasets of projects developed in

cooperation with NASA [15]: JM1, KC1, PC1, PC3, PC4. These were the only NASA

datasets that met the following criteria:

 defects have assigned a date of finding – datasets containing large number defects

which do not have assigned date of finding were excluded from the analysis as we

cannot calculate the aggregated number of defects found in a testing iteration,

 the values follow some kind of a trend – there may be some deviations from the trend

line but generally some kind of a trend is followed,

 the testing phase lasted for some time (at least 30 iterations) – so that our model can

learn using some early observed values and predict the future,

We decided to perform analysis for testing iteration of 1 month. Although it might be more

practical to have shorter iteration duration, e.g. 1 week, we found that the datasets were too

noisy. The model could not learn any reasonable trend from such noisy data. Even if the

model somehow could be trained using such data its predictions would be very different from

actual values observed in iterations after learning the model. It would predict only a general

trend learnt but, without any other variables explaining variation of observed defects found,

not the actually observed values.

The monthly defect data from NASA generally follow a so called ‘delayed S’ trend line [10,

16] where the number of defects found per iteration increases at the beginning and after

reaching its peak slowly decreases toward 0. However, there are a couple of values far away

from the general trend line in each dataset. But the variation between subsequent iterations is

much smaller in monthly aggregations than in the case of weekly data.

The initial model

We assume that the model can be used in the environment where the software is developed in

a classical waterfall cycle. The model assumes that there is some unknown number of residual

defects introduced before testing. It also assumes that no new defects will be introduced once

the testing has started which means that no new functionality will be added to the code base.

The testing process is not treated as a black-box where we cannot identify its parts. Rather, we

treat a whole testing process as a set of testing iterations repeated one after another.

The model consists of the following parts (Figure 1):

1. Priors.

This subnet contains initial (prior) probability distributions for variables that are to be learnt

later: testing effectiveness and residual defects.

2. Learning.

This subnet contains sets of variables linked together as a single BN. Its purpose is to learn

the unknown residual defects after each iteration and testing effectiveness in each iteration.

3. Prediction.

The first k iterations (e.g. 3 as illustrated on Figure 1) are used for learning the model – we

have to enter observations for defects found in the first k testing iterations. Starting from

iteration k+1 the model predicts the number of defects found which are likely to occur in each

future testing iteration. It also predicts the testing effectiveness in each testing iteration and

number of residual defects remaining after each future testing iteration. For reasons of

computational efficiency, this part of the model is a Dynamic Bayesian Net (DBN) with

testing iterations linked sequentially. Here the model does not learn anything from the data,

but rather uses the previously learnt testing effectiveness and number of residual defects to

predict the number of defects found in the future.

Figure 1 The detailed structure of the testing iterations (top) and initial prediction results with PC1

dataset (middle and bottom)

Learning Priors

T1

Prediction

T2 T3 T4 T5
testing

effectiveness
T0

residual
defects

T0

residual
defects

T1

testing
effectiveness

T1

defects
found

T1

residual
defects

T2

testing
effectiveness

T2

defects
found

T2

residual
defects

T3

testing
effectiveness

T3

defects
found

T3

residual
defects

T4

testing
effectiveness

T4

defects
found

T4

residual
defects

T5

testing
effectiveness

T5

defects
found

T5

We entered the following expression in the model variables:

 testing effectiveness T0 = Uniform(0, 1),

 residual defects T0 = Normal(1000, 1000000).

 testing effectiveness Ti = TNormal(testing effectiveness Ti-1, 0.001, 0, 1).

 residual defects Ti = Max(0, residual defects Ti-1 – defects found Ti).

 defects found Ti = Binomial(residual defects Ti-1, testing effectiveness Ti).

We have developed and executed our model using the API for the AgenaRisk toolset [17].

Lessons learned from model creation and validation

1. Influence of the prior distribution in ‘residual defects’

There are two important parameters in the expression in this variable: its mean and the

variance. Both of them may have a significant impact on the predictions given by the model.

Ideally we would like to have a point value distribution in this node reflecting the true number

of residual defects with no variance (certain value). But we know it is impossible to estimate

the number of residual defects with 100% accuracy using any method. Still, it is important to

set the distribution of this node with a mean as close to the real number of residual defects and

the variance as low as possible. Setting a variance to a very low value means that the model

has more ‘trust’ in the entered distribution in this variable than the observations entered for

defects found in some first testing iterations. This is especially important when the mean

value in this variable has been set far from the real number of the residual defects. In such

cases the model under- or overestimates the predicted number of defects found (in the

iterations following those for which we entered observations in defects found) and the number

of defects remaining after a specific testing iteration.

2. Influence of the variance in expression in ‘testing effectiveness’

The prediction for number of defects found in future testing iterations depends on the value of

the variance entered in the variable ‘testing effectiveness’. If the variance entered is low (e.g.

0.0001) the model predicts that the defects will be found in the longer period of time. If the

variance is high (e.g. 0.05) then in many scenarios the model predicts that few or no defects

will be found in the testing iterations following the last iteration with entered observation in

the number of defects found. The reason for such contrasting predictions is that in the second

case (higher variance) the model believes that the majority of the defects have already been

found during past testing iterations. Higher than usual values in the number of defects found

in specific iteration are explained in the model by the higher testing effectiveness in a

particular iteration. Such explanations can be given by the model because with higher

variance in the equation the model can ‘understand’ higher variation in the real testing

effectiveness which might have been caused by allocating more effort and/or more testers

taking part in the process of finding defects. In the scenarios that we tested we found that the

most reasonable predictions can be given when the variance is set to value around 0.001.

3. Influence of the prior distribution in ‘testing effectiveness’

The variable ‘testing effectiveness’ reflects the probability of finding a defect in a specific

testing iteration. Because of this assumption it must be within the range from 0 to 1. But

without any other process factors in the model we cannot make any further assumptions about

its value. For example, we cannot say if the value of 0.05, meaning that we should expect

around 5% of the defects to be found during specific iteration, is high or low. It depends on

the granularity of the data we use in our model. If the testing iteration is brief, e.g. one day,

then such a value appears to be attractively high. On the other hand, if the testing iteration is

long, (e.g. three months), than it does not seem so attractive anymore. Clearly, the value also

depends on the software itself, especially the size which influences the number of defects the

most. The more residual defects are in the software the less likely it is that the testers will find

the majority of them in a single iteration. It all means that we cannot make any assumption

about the prior probability distribution in the ‘testing effectiveness’. That is why we entered

the Uniform distribution over the range from 0 to 1 in which any of the values within this

range is equally likely to happen. After entering the observations to defects found in some

first testing iterations the distributions in this variable in all iterations are revised – they are

not that flat anymore.

4. Influence of the expression in ‘defects found’

In our model the number of defects found is expressed as a Binomial distribution with number

of trials equal to remaining residual defects before the specific testing iteration and with

probability of success equal to the testing effectiveness in the current iteration. Such a

distribution has been used in earlier models [2, 18].

5. Prediction accuracy

The basic version of the model does not give accurate predictions for number of defects found

in future iterations. This can be explained by the lack of variables in the model which would

be able to explain the variation in the number of defects found between iterations, i.e. why the

testing effectiveness varies between subsequent iterations so much. However, given the

observations entered to the model, we actually get reasonable predictions. The model is highly

inaccurate especially for entering observations for small number of iterations (<10). But if the

values entered are very low (as they usually are in the analyzed datasets) why should the

model predict the increase of number of defects found in future iterations without any

information about the number of residual defects and, more importantly, the factors affecting

the testing effectiveness? To have improved and useful predictions we need the extended

model with additional variables.

Extending the model

To improve the model’s accuracy and realism we added new variables to the model. Two

factors seem to be most influential on the testing effectiveness:

 effort spent on testing,

 testing process and people quality.

These new variables are not expressed on an absolute scale. Rather they reflect the ratio of the

value in the given iteration to the value in the previous iteration. We assume that users can

provide observations for these variables in the first iterations used to learn the model. For

example, if the effort in the current iteration increased by 20% compared to the previous one

the users should enter a value ‘1.2’.

Although effort and process and people quality seem to be most influential on the testing

effectiveness they do not explain the whole variation of the testing effectiveness. In certain

cases it may happen that although both effort and process and people quality increased we

observe the lower testing effectiveness. Therefore we added yet another variable ‘bias’ which

reflects the aggregation of all negative factors occurring in the specific testing iteration. This

includes, for example, the need to prepare additional test cases (which causes the situation

whereby some effort is not effectively used on purely finding defects) or testing a component

that was not tested much before (and testers need to learn this component to know where and

how it should be tested).

We added an intermediate node ‘testing effectiveness change Ti’ which aggregates the testing

factors. It reflects the extent at which the testing effectiveness changed in the given iteration

compared to the previous one. This node is a parent node for ‘testing effectiveness Ti’

together with the ‘testing effectiveness Ti-1’ and ‘testing effectiveness limit’. Introducing the

latter ensures that the change of testing factors to some degree does not cause the same degree

of change in testing effectiveness but lower. The structure of the single iteration in the

extended model is illustrated on Figure 2 (top part). The expressions in the new or updated

nodes are the following:

 testing effort Ti = Normal(1, 0.1),

 process and people quality Ti = Normal(1, 0.1),

 testing bias Ti = Normal(1, 0.1),

 testing effectiveness change Ti =

Normal(process and people quality Ti * ((effort Ti – 1) * 0.8 + 1) / bias Ti, 0.01),

 testing effectiveness limit Ti = testing effectiveness limit Ti-1,

 testing effectiveness Ti = testing effectiveness Ti-1 *

((testing effectiveness change Ti – 1) * testing effectiveness limit Ti) + 1).

The expression for ‘testing effectiveness change Ti’ ensures that testing effort has lower

impact on the testing effectiveness than the process and people quality.

Figure 2 The structure of the extended model (top) with example prediction results (middle and bottom)

The observations in the extended model should be assigned for all known variables (effort,

process and people quality, bias, defects found) in the first iterations used for learning the

testing
effectiveness

Ti-1

residual
defects

Ti-1

residual
defects

Ti

testing
effectiveness

Ti

defects
found

Ti

testing
effectiveness

change Ti

testing
effort

Ti

process &
people quality

Ti

testing
bias
Ti

testing
effectiveness

limit Ti

testing
effectiveness

limit Ti-1

model. For prediction only the observations for effort, process and people quality and possibly

for bias. These observations are treated as anticipated values – planned to be achieved. Based

on these observations the model predicts the number of defects found in future testing

iterations.

The NASA datasets used earlier do not contain any values reflecting testing effectiveness like

testing effort or process and people quality. Therefore we do not use these datasets to validate

an extended version of the model. Instead we generated a sample dataset sorely for the

purpose to validate the extended version of the model. When generating this dataset we set an

initial number of residual defects and generated random values for changes in effort, process

and people quality and bias. Then, using these values and equations as in the model we

generated the values for the number of defects found in each iteration. Then we manually

changed some of the values to ensure that the shape of the trend line follows the one typically

occurring in real projects (initial increase of the number of defects found, followed by a

decrease towards 0).

We used this dataset by entering the values describing each iteration to the model. We did not

enter the precise value of number of residual defects as in practice this would not be possible.

Also, the values for effort, process and people quality and bias we entered with lower

precision – in the dataset they were up to the second decimal place, in the model we entered

these values rounded to the first decimal place. This is to simulate the accuracy of estimating

these factors in real projects which will never be exactly 100% accurate.

The aim of this validation is to find out how fast the model learns the testing effectiveness and

real number of residual defects which were in at the beginning of the testing process. Our

results (Figure 2) show that the prediction accuracy for the first couple of iterations following

the iterations used for learning is generally acceptable in every case. However, predicting the

number of defects found far in the future requires more iterations used to learn the model.

Conclusions

We developed a Bayesian net model for predicting number of defects likely to be found in

future testing iterations. We discussed various issues that arose during model development

and validation which may be useful to other researchers building similar models and to

practitioners needing to adjust the model to their needs.

We initially tested this model using some NASA datasets. This initial validation proved that

the model cannot achieve high prediction accuracy without either incorporating the shape of

the trend line of the number of defects found into the model or without additional factors

influencing the testing effectiveness. We chose the latter option and included additional

factors to the model: effort, process and people quality and bias.

The validation performed on a semi-randomly generated dataset proves the need for providing

additional factors influencing testing effectiveness to such type of model. In the future we

plan to extend the model to enable prediction for number of defects fixed in specific iteration.

This will also require the changes in the model to capture the possibility of inserting new

defects due to imperfect fixing.

Bibliography

1. Chulani S., Boehm B.: Modelling Software Defect Introduction and Removal:

COQUALMO (COnstructive QUAlity MOdel), Technical Report USC-CSE-99-510,

University of Southern California, Center for Software Engineering, 1999.

2. Fenton N.E., Neil M., Hearty P., Marsh W., Marquez D., Krause P., Mishra R.:

Predicting Software Defects in Varying Development Lifecycles using Bayesian Nets,

Information & Software Technology, Vol. 49, 2007, pp. 32-43.

3. Gaffney J.R.: Estimating the Number of Faults in Code, IEEE Trans. Software Eng. Vol.

10, No. 4, 1984, pp. 141-152.

4. Lipow M.: Number of Faults per Line of Code, IEEE Trans. Software Eng., Vol. 8, No. 4,

1982, pp. 437-439.

5. Bell R.M., Weyuker E.J., Ostrand T.J.: Predicting the Location and Number of Faults in

Large Software Systems, IEEE Trans. Software Eng., Vol. 34, No. 4, Apr. 2005, pp. 340-

355.

6. Briand L.C., Melo W.L., Wüst J.: Assessing the Applicability of Fault-Proneness Models

across Object-Oriented Software Projects, IEEE Trans. Software Eng., Vol. 28, No. 7,

July 2002, pp. 706-720.

7. Pai G.J., Dugan J.B.: Empirical Analysis of Software Fault Content and Fault Proneness

Using Bayesian Methods, IEEE Trans. Software Eng., Vol. 33, No. 10, Oct. 2007, pp.

675-686.

8. Lyu M.R.: Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

9. Musa J.D., Iannino A., Okumoto K.: Software Reliability: Measurement, Prediction,

Application, McGraw-Hill, 1989.

10. Almering V., van Genuchten M., Cloudt G., Sonnemans P.J.M.: Using Software

Reliability Growth in Practice, IEEE Software, Vol. 24, No. 6, 2007, pp. 82-88.

11. Cangussu J.W., DeCarlo R.A., Mathur A.P.: A Formal Model of the Software Test

Process, IEEE Trans. Software Eng., Vol. 28, No. 8, Aug. 2002, pp. 782-796.

12. Kapur P.K., Goswami D.N., Bardhan Amit, Singh Ompal: Flexible Software Reliability

Growth Models with testing effort dependent learning process, Applied Mathematical

Modelling, in press, 2007, doi:10.1016/j.apm.2007.04.002.

13. Levendel Y.: Reliability Analysis of Large Software Systems: Defect Data Modelling,

IEEE Trans. Software Eng., Vol. 16, No. 2, Feb. 1990, pp. 141-152.

14. Zhao Jianmin, Chan A.H.C., Roberts C., Madelin K.B.: Reliability Evaluation and

optimization of imperfect inspections for a component with multi-defects, Reliability Eng.

and System Safety, Vol. 92, 2007, pp. 65-73.

15. Metrics Data Program, NASA IV&V facility, 2007, http://mdp.ivv.nasa.gov/.

16. Kan S.H.: Metrics and Models in Software Quality Engineering. Second Edition,

Addison-Wesley Longman Publishing Co., Inc., Boston, 2002.

17. Agena: AgenaRisk. Bayesian Network Software Tool, www.agenarisk.com, 2008.

18. Fenton N., Neil M., Marsh W., Hearty P., Radliński Ł., Krause P.: Project Data

Incorporating Qualitative Factors for Improved Software Defect Prediction, Proc. Third

Int. Workshop on Predictor Models in Software Eng., Int. Conf. on Software Eng., IEEE

Computer Society, Washington, DC, 2007, p. 2.

