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A Learning Bayesian Net 

for Predicting Number of Software Defects Found 

in a Sequence of Testing 

Abstract 

We present the model for predicting the number of defects found in each testing iteration. The 

model assumes that the software is developed either according to the classical waterfall 

lifecycle or its variation, where testing takes place in a series of iterations after the coding of 

the whole software is finished. The input data to the initial model are the numbers of defects 

found in some first iterations of testing. Our model can also use as the input the estimated 

total number of residual defects given by other models. We partially validate the model using 

the publicly available datasets of software projects developed in cooperation with NASA: 

JM1, KC1, PC1, PC3, PC4. However, these datasets did not contain any information on 

testing effort and our results highlight the importance of recording such data for factors 

influencing testing effectiveness. We show how the model can be extended by adding other 

input variables such as effort, process and people quality and bias. Finally, we show the 

results of validating this extended model using a semi-randomly generated dataset. 
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Background and motivation 

Software quality prediction has been a well researched topic in software engineering for many 

years. This research has generally focused on a) predicting the total number of residual 

defects remaining in software after testing or release [1, 2, 3, 4]; b) identifying fault prone 

components (module, class etc.) [5, 6, 7]; c) reliability treated as predicting time between 

failures or similar measures [8, 9]; and d) predicting the number of defects to be found in 

specific time intervals in the future. Increasingly we have found that practitioners are most 

concerned with this latter problem. Yet none of the past achievements in this area can be 

regarded as totally satisfactory. In this paper we describe a model (a Bayesian net) that we 

developed to predict the number of defects that are likely to be found in future testing 



iterations, given data about defects on previous iterations. This problem has been analyzed in 

numerous studies using different modeling techniques [10, 11, 12, 13, 14]. We also discuss 

the initial model validation results. 

Generally, we can develop 3 types of models for predicting number of defects in a specific 

testing iteration: 

1. Models following a specific trend line. 

Before developing a model a trend type has to be determined. Then an expression that is a 

function of time has to be developed. At the end the parameters for this expression describing 

the trend line have to be estimated using some of the data from the available dataset. The 

prediction is made by entering the iteration number as an input to the expression (possibly 

with other variables describing the testing process). 

2. Learning models following a specific trend line. 

As in the previous type both a trend type and an expression describing the trend have to be 

determined. But the expression parameters do not need to be estimated outside the model. 

Rather the values of early observations of defects found are entered in the model. Then the 

model learns its parameters – in BNs this is done using back-propagation. As in the previous 

type, the prediction is made by entering the iteration number as an input to the model (also 

possibly with other variables describing testing process). 

3. Learning models without the specific trend line assumption. 

In this type of model there is no assumption about the type of trend line followed by the data. 

It can be modeled as a network – set of variables influencing each other. The unknown values 

of variables are learnt after entering observations for number of defects found in some early 

testing iterations. The prediction is made after generating more instances of single iterations 

and linking them in the same way as they were defined for learning. 

In this study we analyze the possibility of developing a model of the latter type – without the 

specific trend line assumption for defects found. We want to develop a model usable in 

various testing approaches without assumptions about the trend lines. Furthermore, we want 

to expand the model by other actions and consequences related to testing such as: fixing 

defects and introducing new defects as a result of imperfect fixes. 

 

The datasets 

In our study we have used some of the publicly available datasets of projects developed in 

cooperation with NASA [15]: JM1, KC1, PC1, PC3, PC4. These were the only NASA 

datasets that met the following criteria: 



 defects have assigned a date of finding – datasets containing large number defects 

which do not have assigned date of finding were excluded from the analysis as we 

cannot calculate the aggregated number of defects found in a testing iteration, 

 the values follow some kind of a trend – there may be some deviations from the trend 

line but generally some kind of a trend is followed, 

 the testing phase lasted for some time (at least 30 iterations) – so that our model can 

learn using some early observed values and predict the future, 

We decided to perform analysis for testing iteration of 1 month. Although it might be more 

practical to have shorter iteration duration, e.g. 1 week, we found that the datasets were too 

noisy. The model could not learn any reasonable trend from such noisy data. Even if the 

model somehow could be trained using such data its predictions would be very different from 

actual values observed in iterations after learning the model. It would predict only a general 

trend learnt but, without any other variables explaining variation of observed defects found, 

not the actually observed values. 

The monthly defect data from NASA generally follow a so called ‘delayed S’ trend line [10, 

16] where the number of defects found per iteration increases at the beginning and after 

reaching its peak slowly decreases toward 0. However, there are a couple of values far away 

from the general trend line in each dataset. But the variation between subsequent iterations is 

much smaller in monthly aggregations than in the case of weekly data. 

 

The initial model 

We assume that the model can be used in the environment where the software is developed in 

a classical waterfall cycle. The model assumes that there is some unknown number of residual 

defects introduced before testing. It also assumes that no new defects will be introduced once 

the testing has started which means that no new functionality will be added to the code base. 

The testing process is not treated as a black-box where we cannot identify its parts. Rather, we 

treat a whole testing process as a set of testing iterations repeated one after another. 

The model consists of the following parts (Figure 1): 

1. Priors. 

This subnet contains initial (prior) probability distributions for variables that are to be learnt 

later: testing effectiveness and residual defects. 

2. Learning. 

This subnet contains sets of variables linked together as a single BN. Its purpose is to learn 

the unknown residual defects after each iteration and testing effectiveness in each iteration.  



3. Prediction. 

The first k iterations (e.g. 3 as illustrated on Figure 1) are used for learning the model – we 

have to enter observations for defects found in the first k testing iterations. Starting from 

iteration k+1 the model predicts the number of defects found which are likely to occur in each 

future testing iteration. It also predicts the testing effectiveness in each testing iteration and 

number of residual defects remaining after each future testing iteration. For reasons of 

computational efficiency, this part of the model is a Dynamic Bayesian Net (DBN) with 

testing iterations linked sequentially. Here the model does not learn anything from the data, 

but rather uses the previously learnt testing effectiveness and number of residual defects to 

predict the number of defects found in the future. 

 

Figure 1 The detailed structure of the testing iterations (top) and initial prediction results with PC1 

dataset (middle and bottom) 
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We entered the following expression in the model variables: 

 testing effectiveness T0 = Uniform(0, 1), 

 residual defects T0 = Normal(1000, 1000000). 

 testing effectiveness Ti = TNormal(testing effectiveness Ti-1, 0.001, 0, 1). 

 residual defects Ti = Max(0, residual defects Ti-1 – defects found Ti). 

 defects found Ti = Binomial(residual defects Ti-1, testing effectiveness Ti). 

We have developed and executed our model using the API for the AgenaRisk toolset [17].  

 

Lessons learned from model creation and validation 

1. Influence of the prior distribution in ‘residual defects’ 

There are two important parameters in the expression in this variable: its mean and the 

variance. Both of them may have a significant impact on the predictions given by the model. 

Ideally we would like to have a point value distribution in this node reflecting the true number 

of residual defects with no variance (certain value). But we know it is impossible to estimate 

the number of residual defects with 100% accuracy using any method. Still, it is important to 

set the distribution of this node with a mean as close to the real number of residual defects and 

the variance as low as possible. Setting a variance to a very low value means that the model 

has more ‘trust’ in the entered distribution in this variable than the observations entered for 

defects found in some first testing iterations. This is especially important when the mean 

value in this variable has been set far from the real number of the residual defects. In such 

cases the model under- or overestimates the predicted number of defects found (in the 

iterations following those for which we entered observations in defects found) and the number 

of defects remaining after a specific testing iteration. 

2. Influence of the variance in expression in ‘testing effectiveness’ 

The prediction for number of defects found in future testing iterations depends on the value of 

the variance entered in the variable ‘testing effectiveness’. If the variance entered is low (e.g. 

0.0001) the model predicts that the defects will be found in the longer period of time. If the 

variance is high (e.g. 0.05) then in many scenarios the model predicts that few or no defects 

will be found in the testing iterations following the last iteration with entered observation in 

the number of defects found. The reason for such contrasting predictions is that in the second 

case (higher variance) the model believes that the majority of the defects have already been 

found during past testing iterations. Higher than usual values in the number of defects found 

in specific iteration are explained in the model by the higher testing effectiveness in a 



particular iteration. Such explanations can be given by the model because with higher 

variance in the equation the model can ‘understand’ higher variation in the real testing 

effectiveness which might have been caused by allocating more effort and/or more testers 

taking part in the process of finding defects. In the scenarios that we tested we found that the 

most reasonable predictions can be given when the variance is set to value around 0.001. 

3. Influence of the prior distribution in ‘testing effectiveness’ 

The variable ‘testing effectiveness’ reflects the probability of finding a defect in a specific 

testing iteration. Because of this assumption it must be within the range from 0 to 1. But 

without any other process factors in the model we cannot make any further assumptions about 

its value. For example, we cannot say if the value of 0.05, meaning that we should expect 

around 5% of the defects to be found during specific iteration, is high or low. It depends on 

the granularity of the data we use in our model. If the testing iteration is brief, e.g. one day, 

then such a value appears to be attractively high. On the other hand, if the testing iteration is 

long, (e.g. three months), than it does not seem so attractive anymore. Clearly, the value also 

depends on the software itself, especially the size which influences the number of defects the 

most. The more residual defects are in the software the less likely it is that the testers will find 

the majority of them in a single iteration. It all means that we cannot make any assumption 

about the prior probability distribution in the ‘testing effectiveness’. That is why we entered 

the Uniform distribution over the range from 0 to 1 in which any of the values within this 

range is equally likely to happen. After entering the observations to defects found in some 

first testing iterations the distributions in this variable in all iterations are revised – they are 

not that flat anymore. 

4. Influence of the expression in ‘defects found’ 

In our model the number of defects found is expressed as a Binomial distribution with number 

of trials equal to remaining residual defects before the specific testing iteration and with 

probability of success equal to the testing effectiveness in the current iteration. Such a 

distribution has been used in earlier models [2, 18]. 

5. Prediction accuracy 

The basic version of the model does not give accurate predictions for number of defects found 

in future iterations. This can be explained by the lack of variables in the model which would 

be able to explain the variation in the number of defects found between iterations, i.e. why the 

testing effectiveness varies between subsequent iterations so much. However, given the 

observations entered to the model, we actually get reasonable predictions. The model is highly 

inaccurate especially for entering observations for small number of iterations (<10). But if the 



values entered are very low (as they usually are in the analyzed datasets) why should the 

model predict the increase of number of defects found in future iterations without any 

information about the number of residual defects and, more importantly, the factors affecting 

the testing effectiveness? To have improved and useful predictions we need the extended 

model with additional variables. 

 

Extending the model 

To improve the model’s accuracy and realism we added new variables to the model. Two 

factors seem to be most influential on the testing effectiveness: 

 effort spent on testing, 

 testing process and people quality. 

These new variables are not expressed on an absolute scale. Rather they reflect the ratio of the 

value in the given iteration to the value in the previous iteration. We assume that users can 

provide observations for these variables in the first iterations used to learn the model. For 

example, if the effort in the current iteration increased by 20% compared to the previous one 

the users should enter a value ‘1.2’.  

Although effort and process and people quality seem to be most influential on the testing 

effectiveness they do not explain the whole variation of the testing effectiveness. In certain 

cases it may happen that although both effort and process and people quality increased we 

observe the lower testing effectiveness. Therefore we added yet another variable ‘bias’ which 

reflects the aggregation of all negative factors occurring in the specific testing iteration. This 

includes, for example, the need to prepare additional test cases (which causes the situation 

whereby some effort is not effectively used on purely finding defects) or testing a component 

that was not tested much before (and testers need to learn this component to know where and 

how it should be tested). 

We added an intermediate node ‘testing effectiveness change Ti’ which aggregates the testing 

factors. It reflects the extent at which the testing effectiveness changed in the given iteration 

compared to the previous one. This node is a parent node for ‘testing effectiveness Ti’ 

together with the ‘testing effectiveness Ti-1’ and ‘testing effectiveness limit’. Introducing the 

latter ensures that the change of testing factors to some degree does not cause the same degree 

of change in testing effectiveness but lower. The structure of the single iteration in the 

extended model is illustrated on Figure 2 (top part). The expressions in the new or updated 

nodes are the following: 

 testing effort Ti = Normal(1, 0.1), 



 process and people quality Ti = Normal(1, 0.1), 

 testing bias Ti = Normal(1, 0.1), 

 testing effectiveness change Ti =  

Normal(process and people quality Ti * ((effort Ti – 1) * 0.8 + 1) / bias Ti, 0.01), 

 testing effectiveness limit Ti = testing effectiveness limit Ti-1, 

 testing effectiveness Ti = testing effectiveness Ti-1 *  

((testing effectiveness change Ti – 1) * testing effectiveness limit Ti) + 1). 

The expression for ‘testing effectiveness change Ti’ ensures that testing effort has lower 

impact on the testing effectiveness than the process and people quality. 

 

Figure 2 The structure of the extended model (top) with example prediction results (middle and bottom) 
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model. For prediction only the observations for effort, process and people quality and possibly 

for bias. These observations are treated as anticipated values – planned to be achieved. Based 

on these observations the model predicts the number of defects found in future testing 

iterations. 

The NASA datasets used earlier do not contain any values reflecting testing effectiveness like 

testing effort or process and people quality. Therefore we do not use these datasets to validate 

an extended version of the model. Instead we generated a sample dataset sorely for the 

purpose to validate the extended version of the model. When generating this dataset we set an 

initial number of residual defects and generated random values for changes in effort, process 

and people quality and bias. Then, using these values and equations as in the model we 

generated the values for the number of defects found in each iteration. Then we manually 

changed some of the values to ensure that the shape of the trend line follows the one typically 

occurring in real projects (initial increase of the number of defects found, followed by a 

decrease towards 0). 

We used this dataset by entering the values describing each iteration to the model. We did not 

enter the precise value of number of residual defects as in practice this would not be possible. 

Also, the values for effort, process and people quality and bias we entered with lower 

precision – in the dataset they were up to the second decimal place, in the model we entered 

these values rounded to the first decimal place. This is to simulate the accuracy of estimating 

these factors in real projects which will never be exactly 100% accurate. 

The aim of this validation is to find out how fast the model learns the testing effectiveness and 

real number of residual defects which were in at the beginning of the testing process. Our 

results (Figure 2) show that the prediction accuracy for the first couple of iterations following 

the iterations used for learning is generally acceptable in every case. However, predicting the 

number of defects found far in the future requires more iterations used to learn the model. 

 

Conclusions 

We developed a Bayesian net model for predicting number of defects likely to be found in 

future testing iterations. We discussed various issues that arose during model development 

and validation which may be useful to other researchers building similar models and to 

practitioners needing to adjust the model to their needs. 

We initially tested this model using some NASA datasets. This initial validation proved that 

the model cannot achieve high prediction accuracy without either incorporating the shape of 

the trend line of the number of defects found into the model or without additional factors 



influencing the testing effectiveness. We chose the latter option and included additional 

factors to the model: effort, process and people quality and bias. 

The validation performed on a semi-randomly generated dataset proves the need for providing 

additional factors influencing testing effectiveness to such type of model. In the future we 

plan to extend the model to enable prediction for number of defects fixed in specific iteration. 

This will also require the changes in the model to capture the possibility of inserting new 

defects due to imperfect fixing. 
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